Volume 10, Issue 40 (8-2020)                   NCMBJ 2020, 10(40): 65-76 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

dehghan esmatabadi M J, barati M, yaghobi moghaddam M A. Design and production of a genetically simulant construct for the detection of B. malei and pseudomaleii. NCMBJ 2020; 10 (40) :65-76
URL: http://ncmbjpiau.ir/article-1-1316-en.html
Department of Medical Biotechnology, School of Allied Medical Sciences Iran University of Medical Sciences, Tehran, Iran
Full-Text [PDF 5091 kb]   (1287 Downloads)     |   Abstract (HTML)  (2673 Views)
Full-Text:   (1144 Views)
Design and production of a genetically simulant
construct for the detection of B. malei and pseudomaleii 
Mohammad javad dehghan esmatabadi*1, Mahmood barati2,
Mohammad ali yaghobi moghaddam1
1- Maleke Ashtar University, Tehran, Iran
2 Department of Medical Biotechnology, School of Allied Medical Sciences Iran University of Medical Sciences, Tehran, Iran
Abstract
Aim and Background: the genus Burkholderia (mallei and pseudomallei species) are classified as dangerous human pathogens. Diagnosing cultures for this bacterium is costly and time consuming and on the other hand it is very dangerous to work with and it is very difficult to access this bacterium. the porpose of this research Design and production of a genetically simulant construct for the detection of  B. pseudomaleii
Material & Methods: initially, a simulant construct containing the reference and specific genes of the mallei and pseudomallei species was not observed in other species of the family, and then the operational efficiency of the designed construct was quantified using Real-Time Quantitative PCR. Quality (SYBER Green) and qualitative (using TaqMan probe) were evaluated. Finally, Real-Time PCR amplification products were analyzed by melting curve and electrophoresis.
Results: the minimum and maximum sensitivity were 0.1 pg and 10 ng on the constructs designed in the present study, was obtained.
Conclusion: This simulat can be used as a positive control for the detection of the Burkholderia agent and can further enhance the development of new diagnostic kits in the field.
Keywords: pathogens, Burkholderia, Real Time PCR, cloning, SYBR Green

 
 
 
 
 
 
 
 
 
 
 
 
Type of Study: Research Article | Subject: Cellular and molecular
Received: 2020/10/15 | Accepted: 2020/08/31 | Published: 2020/08/31

References
1. Brown TA. Gene cloning and DNA analysis: an introduction: John Wiley & Sons; 2016.
2. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. Cloning Should Be Simple: Escherichia coli DH5alpha-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. PloS one. 2015;10(9):e0137466. PubMed PMID: 26348330. Pubmed Central PMCID: 4562628.
3. Charrel RN, La Scola B, Raoult D. Multi-pathogens sequence containing plasmids as positive controls for universal detection of potential agents of bioterrorism. BMC Microbiol. 2004 May 17;4:21. PubMed PMID: 15147587. Pubmed Central PMCID: 425577.
4. Carrera M, Sagripanti JL. Non-infectious plasmid engineered to simulate multiple viral threat agents. J Virol Methods. 2009 Jul;159(1):29-33. PubMed PMID: 19442841.
5. Carrera M, Sagripanti JL. Artificial plasmid engineered to simulate multiple biological threat agents. Appl Microbiol Biotechnol. 2009 Jan;81(6):1129-39. PubMed PMID: 18923830.
6. Saxena A, Pal V, Tripathi NK, Goel AK. Development of a rapid and sensitive recombinase polymerase amplification-lateral flow assay for detection of Burkholderia mallei. Transboundary and emerging diseases. 2019 Mar;66(2):1016-22. PubMed PMID: 30650261.
7. Saxena A, Pal V, Tripathi NK, Goel AK. A real-time loop mediated isothermal amplification assay for molecular detection of Burkholderia mallei, the aetiological agent of a zoonotic and re-emerging disease glanders. Acta tropica. 2019 Jun;194:189-94. PubMed PMID: 30958991.
8. Shi L, Chen J, Yi G. Burkholderia pseudomallei was Identified in a Melioidosis Aneurysm using Polymerase Chain Reaction Targeting 23S rRNA. Annals of vascular surgery. 2020 Oct;68:569 e13- e20. PubMed PMID: 32339680.
9. Peng Y, Zheng X, Kan B, Li W, Zhang W, Jiang T, et al. Rapid detection of Burkholderia pseudomallei with a lateral flow recombinase polymerase amplification assay. PloS one. 2019;14(7):e0213416. PubMed PMID: 31283772. Pubmed Central PMCID: 6613700.
10. Estrada-de los Santos P, Vinuesa P, Martinez-Aguilar L, Hirsch AM, Caballero-Mellado J. Phylogenetic analysis of burkholderia species by multilocus sequence analysis. Current microbiology. 2013 Jul;67(1):51-60. PubMed PMID: 23404651.
11. Torres AG, Hall CM, Jaramillo S, Jimenez R, Stone NE, Centner H, et al. Burkholderia pseudomallei, the causative agent of melioidosis, is rare but ecologically established and widely dispersed in the environment in Puerto Rico. PLOS Neglected Tropical Diseases. 2019;13(9):e0007727.
12. Khakhum N, Chapartegui-Gonzalez I, Torres AG. Combating the great mimicker: latest progress in the development of Burkholderia pseudomallei vaccines. Expert review of vaccines. 2020 Jul;19(7):653-60. PubMed PMID: 32669008.
13. Saiprom N, Sangsri T, Tandhavanant S, Sengyee S, Phunpang R, Preechanukul A, et al. Genomic loss in environmental and isogenic morphotype isolates of Burkholderia pseudomallei is associated with intracellular survival and plaque-forming efficiency. PLoS Negl Trop Dis. 2020 Sep 29;14(9):e0008590. PubMed PMID: 32991584.
14. Whitlock GC, Estes DM, Torres AG. Glanders: off to the races with Burkholderia mallei. FEMS Microbiol Lett. 2007 Dec;277(2):115-22. PubMed PMID: 18031330.
15. Losada L, Ronning CM, DeShazer D, Woods D, Fedorova N, Kim HS, et al. Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements. Genome Biol Evol. 2010 Jan 22;2:102-16. PubMed PMID: 20333227. Pubmed Central PMCID: 2839346.
16. Bondi SK, Goldberg JB. Strategies toward vaccines againstBurkholderia malleiandBurkholderia pseudomallei. Expert review of vaccines. 2014;7(9):1357-65.
17. Moawad AA, Silge A, Bocklitz T, Fischer K, Rosch P, Roesler U, et al. A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species. Molecules. 2019 Dec 10;24(24). PubMed PMID: 31835527. Pubmed Central PMCID: 6943587.
18. Khakhum N, Tapia D, Torres AG. Burkholderia mallei and Glanders. In: Singh SK, Kuhn JH, editors. Defense Against Biological Attacks: Volume II. Cham: Springer International Publishing; 2019. p. 161-83.
19. Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev. 2005 Apr;18(2):383-416. PubMed PMID: 15831829. Pubmed Central PMCID: 1082802.
20. Bauernfeind A, Roller C, Meyer D, Jungwirth R, Schneider I. Molecular Procedure for Rapid Detection ofBurkholderia mallei and Burkholderia pseudomallei. Journal of clinical microbiology. 1998;36(9):2737-41.
21. Larson DT, Schully KL, Spall A, Lawler JV, Maves RC. Indirect Detection of Burkholderia pseudomallei Infection in a US Marine After Training in Australia. Open forum infectious diseases. 2020 May;7(5):ofaa103. PubMed PMID: 32391401. Pubmed Central PMCID: 7200084.
22. Chua KH, Tan EW, Chai HC, Puthucheary SD, Lee PC, Puah SM. Rapid identification of melioidosis agent by an insulated isothermal PCR on a field-deployable device. PeerJ. 2020;8:e9238. PubMed PMID: 32518734. Pubmed Central PMCID: 7261116.
23. Ulrich MP, Norwood DA, Christensen DR, Ulrich RL. Using real-time PCR to specifically detect Burkholderia mallei. J Med Microbiol. 2006 May;55(Pt 5):551-9. PubMed PMID: 16585642.
24. Logan J, Logan JM, Edwards KJ, Saunders NA. Real-time PCR: current technology and applications: Horizon Scientific Press; 2009.
25. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009 Apr;55(4):611-22. PubMed PMID: 19246619.
26. Hodgson K, Engler C, Govan B, Ketheesan N, Norton R. Comparison of routine bench and molecular diagnostic methods in identification of Burkholderia pseudomallei. Am Soc Microbiol; 2009. p. 1578-80.
27. Kaestli M, Mayo M, Harrington G, Watt F, Hill J, Gal D, et al. Sensitive and specific molecular detection of Burkholderia pseudomallei, the causative agent of melioidosis, in the soil of tropical northern Australia. Am Soc Microbiol; 2007. p. 6891-7.
28. Lee M-A, Wang D, Yap EH. Detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei and Burkholderia thailandensis by multiplex PCR. Blackwell Publishing Ltd Oxford, UK; 2005. p. 413-7.
29. Merritt A, Inglis TJJ, Chidlow G, Harnett G. PCR-based identification of Burkholderia pseudomallei. SciELO Brasil; 2006. p. 239-44.
30. Novak RT, Glass MB, Gee JE, Gal D, Mayo MJ, Currie BJ, et al. Development and evaluation of a real-time PCR assay targeting the type III secretion system of Burkholderia pseudomallei. Am Soc Microbiol; 2006. p. 85-90.
31. Supaprom C, Wang D, Leelayuwat C, Thaewpia W, Susaengrat W, Koh V, et al. Development of real-time PCR assays and evaluation of their potential use for rapid detection of Burkholderia pseudomallei in clinical blood specimens. Am Soc Microbiol; 2007. p. 2894-901.
32. Thibault FM, Valade E, Vidal DR. Identification and discrimination of Burkholderia pseudomallei, B. mallei, and B. thailandensis by real-time PCR targeting type III secretion system genes. Am Soc Microbiol; 2004. p. 5871-4.
33. . Bowers JR, Engelthaler DM, Ginther JL, Pearson T, Peacock SJ, Tuanyok A, et al. BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B. mallei. PloS one. 2010;5(11):e15413.
34. Podnecky NL, Elrod MG, Newton BR, Dauphin LA, Shi J, Chawalchitiporn S, et al. Comparison of DNA Extraction Kits for Detection of Burkholderia pseudomallei in Spiked Human Whole Blood Using Real-Time PCR. PloS one. 2013;8(2):e58032.
35. Suppiah J, Thimma JS, Cheah SH, Vadivelu J. Development and evaluation of polymerase chain reaction assay to detect Burkholderia genus and to differentiate the species in clinical specimens. FEMS Microbiology Letters. 2010;306(1):9-14.
36. Price EP, Dale JL, Cook JM, Sarovich DS, Seymour ML, Ginther JL, et al. Development and Validation of Burkholderia pseudomallei-Specific Real-Time PCR Assays for Clinical, Environmental or Forensic Detection Applications. PloS one. 2012;7(5):e37723.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | New Cellular and Molecular Biotechnology Journal

Designed & Developed by : Yektaweb