

مدل ساز ی به روش شبیه سازی دینامیک مولکولی مونومر (Aβ (1-42) و (Aβ (40) ، به منظور مقایسه نقش آن ها در ایجاد بیماری آلزایمر

سکینه منصوری (* ، لیلا حبیبی فیضی'، زرین مینوچهر ۲

- گروه شیمی دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران مرکزی
- ۲. دپارتمان بیوانفوماتیک، پژوهشکده ملی مهندسی ژنتیک و بیوتکنولوژی

چکیدہ

سابقه و هدف: مطالعه های آسیبشناختی، تشکیل پلاکهای فیبری و تودههای تجمع یافته پپتید آمیلوئید بتا (Aβ) را یکی از دلایل بیماری آلزایمر پیشنهاد کردهاند. از آن جا که این بیماری وابسته به ساختار فضایی پروتئین است در این مقاله به روش شبیه سازی دینامیک مولکولی مراحل آغازین تغییرهای کنفورماسیون دو مونومر از Aβ، (42-1) Aβ و (40-1) Aβ مورد بررسی قرار می گیرد. **مواد و روش ها:** ساختار NMR دو پپتید (40-1) Aβ و (42-1) Aβ با کد ۱۹۲۲ و ABA از بانک اطلاعات پروتئین گرفته شده است. مونومرها در دمای NMR دو پپتید (14-0) Aβ و (24-1) Aβ با کد ۱۹۲۲ و AB4 از بانک اطلاعات پروتئین گرفته شده است. مونومرها در دمای NMR دو پپتید (14-0) Aβ و (24-1) Aβ با کد ۱۹۲۲ و AB4 از بانک اطلاعات پروتئین گرفته تعدیر است. مونومرها در دمای NMR دو پپتید (14-0) Aβ و (14-2) مع با کد ۱۹۲۲ و AB4 از مرا فزار گرومکس شبیه سازی شدند. **یافته ها:** جذر میانگین مربع انحراف های RMSD، تغییرهای شعاع ژیراسیون و سطح قابل دسترس حلال نشان می دهند که تغییرهای ساختاری و سستی مونومر (24-1) Aβ و استعداد آن در تجمع بیش تر از مونومر (140-1) Aβ است. **ندیجه گیری:** مقایسه سطح قابل دسترس حلال نشان می دهد هیدروفوبیسیتی نقش مهمی در ایجاد کانفورماسیون معیوب مونومر (14-2) Aβ دارد. سایر خواص از جمله سستی ساختاری نیز (24-1) Aβ را مستعد تجمع و ایجاد بیماری آلزایمر نشان می دهند.

کلمات کلیدی: آلزایمر، شبیه سازی دینامیک مولکولی، آمیلوئید بتا، انعطاف پذیری ، شعاع ژیراسیون، سطح قابل دسترس حلال

مقدمه

یکی از مهم ترین پروتئین هایی که در ایجاد بیماری آلزایمر نقش دارد، پروتئین پیش ساز آمیلوئید' (APP) نام دارد که در سلول های عصبی قرار دارد و در اثر پردازش پپتید آمیلوئید بتا (Aβ) به وجود می آید. معمول ترین شکل Aβ، (40-1) Aβ می باشد که به طور طبیعی از سلول ها ترشح می شود، گونه دیگر Aβ، (1-42) Aβاست که تولید و رسوب آن در ایجاد بیماری آلزایمر نقش مهمی دارد. در حالت عادی مقدار این گونه ها در سلول کم است و به سرعت تجزیه می شود، اما اگر در سلول های عصبی این تعادل برهم بخورد و مقدار آن ها افزایش یابد آلزایمر ایجاد می شود. آلزایمر رایج ترین بیماری تحلیل برنده مغز انسان است که

نويسنده مسئول :

گروه شیمی دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران مرکزی پست الکترونیکی: sf_mansori@yahoo.com تاریخ دریافت: ۱۳۹۴/۰۳/۰۵ تاریخ پذیرش: ۱۳۹۴/۰۶/۲۵

1- Amyloid precursor protein

تاکنون درمان ریشه کن کننده برای آن پیدا نشده است. مطالعه های آسیبشناختی، تشکیل پلاکهای فیبری و تودههای تجمع یافته پیتید آمیلوئید بتا در سیستم اعصاب مرکزی را به عنوان یکی از دلایل بیماری آلزایمر پیشنهاد و مهار این فرآیند را به عنوان روش درمان مؤثر برای این نوع بیماری معرفی کردهاند. این بیماری بر طبق نظریه تنها پروتئین^۲ از دسته بیماری های وابسته به ساختار فضایی پروتئین است. (۱،۲۰) این بیماری در افراد بالای ۶۵ سال بروز می کند و به بیماری پیری معروف است. علائم این بیماری با از دست دادن قدرت حفظ اطلاعات به خصوص حافظه موقت در دوران پیری آغاز شده و به تدریج با از دست دادن قدرت تشخیص زمان، افسر دگی، از دست دادن قدرت تکلم، گوشه گیری و سرانجام مرگ در اثر ناراحتی های تنفسی به پایان می رسد. (۲) امروزه افزایش ابتلا به بیماری آلزایمر به یک هشدار جدی و مشکل اجتماعی تبدیل شده است. زیرا ششمین عامل مرگ می باشد. در واقع افزایش میزان مرگ و میر، افزایش هزينه هاى سلامت و مراقبت افراد مبتلا به اين بيمارى، منجر به افزایش بررسی علت بروز و شیوع این بیماری شده است. (

2- Protein only

شکل ۱- نمایش شماتیک شکافت آمیلوئید APP واقع در غشای پلاسما که به آزاد شدن پپتید Aβ بیماری زا منتهی می شود.

بررسی و گسترش مطالعه نقش گونه های آمیلوئیدزا کمک شایانی در متوقف ساختن آسیب ناشی از بیماری و شناسایی بیماری خواهد کرد. هدف این مقاله بررسی تغییرهای آغازین در کانفور ماسیون[†] ساختاری این گونه ها به روش دینامیک مولکولی است که تجربه از ثبت آن قاصر است. این روش ابزار مهم برای درک اساس فیزیکی از ساختار و عمل کرد ماکرومولکول های بيولوژيكى مى باشد. طبق شواهد اخير ساختار به نسبت سخت پروتئین با یک مدل دینامیکی جایگزین شدہ است که بیان گر نقش مهم تغییرهای ساختاری در عمل کرد پروتئین ها می باشد. (۱۸) دیگر ویژگی برجسته شبیه سازی این است که با وجودی که پتانسیل های استفاده شده در شبیه سازی تقریبی هستند، اما آن ها به طور كامل تحت كنترل كاربر است. بنابراین به راحتی می توان با تغییر یک پارامتر اهمیت آن پارامتر را در ویژگی مورد بررسی مطالعه کرد. در مطالعه حاضر یکی از مونومرها فقط دو اسید آمینه در انتهای رشته بیش تر دارد که همین تفاوت ویژگی های خاصی به آن بخشیده است که مورد بررسی قرار می گیرد. یک درک جزئی از ویژگی های ساختاری مونومر آمیلوئید می تواند نقش مهمی در فهم مکانیزم بیماری کمک کند. علی رغم محدوديت طيف بينى رزونانس مغناطيس معمولي يا اشعه ايكس در مطالعه ساختاری آمیلوئید فیبریل بعضی اطلاعات ساختاری و صورت بندی از تکنیک های متنوع طیف بینی جرمی طیف بینی رزونانس مغناطیس حالت جامد به دست آمد. (۱۹) اما تمایل به تجمع آمیلوئید هنوز مشخص نشده است. در تکمیل مطالعه های تجربی، نتایج شبیه سازی کامپیوتری آمیلوئید می تواند اطلاعات کاربردی ارزشمندی از ساختار و پایداری و مکانیزم تشکیل فیبریل از پپتید آمیلوئید بتا ارائه دهد و سرعت رسیدن به راه کارهای مفید درمانی را افزایش دهد.

سوالی که در اینجا مطرح می شود این است که چطور می توان با استفاده از شبیه سازی دینامیک مولکولی تغییرهای گونه 4- conformation ۲۳،۳۲) تاکنون مطالعه های زیادی در این زمینه انجام شده است، ولی هم چنان علت اصلی این بیماری و روش درمان قطعی آن ناشناخته باقی مانده است. بر اساس مطالعه های گسترده ای که بر روی مبتلایان به آلزایمر در مراحل مختلف پیشرفت این بیماری انجام شده، در مغز تمامی این بیماران پلاک های تجمع یافته پروتئین آمیلوئید بتا و پیچ خوردگی های فیبری پروتئین مشاهده شده است. (۲۰، ۲۴) لذا تحقیقات بر روی پروتئین ها از اهمیت خاصی برخوردار است. پروتئین ها جزء ماکرومولکول های هوشمند در سیستم های زنده بشمار می روند که در فرآیندهای بیولوژیکی نقش مهمی دارند. (۳۲) ترادف و ساختار سه بعدی رابطه تنگاتنگ با عمل کرد پروتئین دارند با آن که تغییر در صورت بندی پروتئین که ناشی از دینامیک آن است امری ضروی به شمار می رود، بخش وسیعی از بیماری های انسان و دام مربوط به تاخوردگی نادرست^۳ پروتئین ها می باشد. (۶،۲۱) هیچ تکنیک تجربی که بتواند تغییرهای صورت بندی پروتئین را بر حسب زمان در حد زمان نانو ثانیه بیان کند وجود ندارد. شبیه سازی کامپیوتری این امکان را که اهمیت مهمی دارد فراهم می کند. شبیه سازی دینامیکی مولکول ها راه را برای منطقی تر شدن راه های دستیابی به تولید داروهای مناسب و مفید هموار می کند. (۱۲) در این مقاله در نظر است با کمک گرفتن از روش محاسباتی شبیه سازی دینامیک مولکولی تغییرهای کنفورماسیون دو مونومر (42-1) Αβ و (1-40) و مورد بررسی قرار گیرد.

طرح مساله

به نظر می رسد پپتیدهای آمیلوئیدزا محتمل ترین علت بیماری آلزایمراست. در اثر پردازش پیش ساز آمیلوئیدی به وسیله سه نوع آنزیم پروتئولیتیک آلفا، بتا و گاما - سکرتاز در اسیدهای آمینه ۶۷۸، ۶۷۱ و ۲۱۱، پپتیدهایی به نام آمیلوئید بتا۴۰ – ۱و ۲۹–۱ (به ترتیب دارای ۴۰ و ۴۲ اسید آمینه) ایجاد می شوند. (۳۲) شکل ۱، نمانگر شکافت آمیلوئید PP واقع در غشای پلاسما که به آزاد شدن پپتید ββ بیماری زا منتهی می شود. پروتئین آمیلوئید بتا در توالی های مختلف ۳۹ تا ۴۳ واحد اسید آمینه ای وجود دارد که مهم ترین آن ها توالی های ۴۰ واحدی هستند. به دلیل مشاهده آسیب رسانی بیش تر توالی ۴۲ واحدی آمیلوئید بتا، مطالعه های درمانی بیش تر بر روی این توالی متمرکز شده است. (۸)

³⁻ Misfolding

Asp - Ala - Glu - Phe - Arg - His - Asp - Ser - Gly - Tyr -Glu - Val - His - His -Gln- Lys - Leu - Val - Phe - Phe -Ala - Glu - Asp - Val - Gly - Ser - Asn - Lys - Gly - Ala -Ile - Ile - Gly - Leu - Met - Val - Gly - Gly - Val - Val

متکل۲- توالی اسیدآمینه در مونومر (Aβ (1- 40) - ۵۱۷ - ۵۱۷ - ۲

H -Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-

Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-

Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-

Gly-Gly-Val-Val-Ile-Ala

شکل ۳- توالی اسیدآمینه درمونومر (42 -1) Αβ

شکل ۴- فلوچارت گرومکس

شبیه سازی در سه مرحله صورت می گیرد، ابتدا کمینه سازی انرژی صورت می گیرد، سپس به مدت ۴۰ پیکو ثانیه نمونه ها در موقعیت محدود می شوند و شبیه سازی نهایی نمونه ها در ۲۰ نانو ثانیه بدون محدودیت با پریود زمانی ۲ فمتو ثانیه صورت می گیرد، از مدل آب SPCE و میدان نیرو^۷ Gromos43a1 استفاده می شود.(۲۸ ۲۸) در این شبیه سازی دینامیک مولکولی طول پیوندها برای مولکول های آب بر مقدار تعادلی آن به کمک الگوریتم شیک^۸ تثبیت می شود (۲۲، ۱۴) و برای پروتئین ها الگوریتم لینکس ^۹ به کار می رود. برای خنثی سازی و ایجاد تعادل بار، به تعداد مناسب یون سدیم به جای آب به سیستم اضافه شد. از بانک اطلاعات پروتئین BDB ها با کد

7- Force field8-SHAKE9-LINCS

آمیلوئید زا مسئول در بیماری آلزایمر را بررسی نمود.

شبیه سازی دینامیک مولکولی

آغاز شبیه سازی در سیستم های حیاتی به سال ۱۹۷۷ برمی گردد که شبیه سازی بر روی تریپسین گاوی^۵ انجام شد. در واقع شبیه سازی دینامیک مولکولی ارزیابی رفتار وابسته به زمان سیستم، با بکارگیری مکانیک کلاسیکی است. دینامیک مولکولی روشی برای شبیه سازی رفتار ترمودینامیکی مواد در سه فاز جامد، مایع و گاز با استفاده از نیرو، سرعت و مکان ذرات می باشد. در بین این عوامل، مهم ترین عامل، میدان نیرو است. در شبیه سازی دینامیک مولکولی کلاسیک، میدان نیرو از پتانسیل کلاسیک به دست می آید. پتانسیل کلاسیکی، تابعی از مکان اتم ها یا هسته ها است و به موقعیت الکترون ها در اتم ها وابسته نیست. (۳،۹)

شبیه سازی دینامیک مولکولی، یک سیستم با اندازه کوچک در حد چند نانومتر را در نظر می گیرد و رفتار سیستم را از طریق محاسبه برهم کنش بین اجزای سازنده سیستم تعیین می کند. با استفاده از این روش قادریم فرآیندهای پیچیده ای که در سیستم های زنده اتفاق می افتد را مورد مطالعه قرار داد. این فرآیندها می تواند تغییرهای صورت بندی مولکول های حیاتی، دینامیک و ترمودینامیک مولکول های آن ها و یا مطالعه مکانیسم اثر دارو باشد. شبیه سازی دینامیک مولکولی اطلاعاتی را در سطح میکروسکوپی از جمله موقعیت و سرعت اتم ها در اختیار می گذارد. برای تبدیل چنین خواص میکروسکوپی به نواص ماکروسکوپی نظیر فشار، انرژی، گرمای ویژه و غیره نیاز به مکانیک آماری است. در واقع مکانیک آماری پلی بین خواص میکروسکوپی و ماکروسکوپی است که با بیان ریاضی خواص مشاهده پذیر یستم را به توزیع و حرکت اتم هاو مولکول های سیستم مرتبط می کند. (۱۲، ۱۲)

روش کار

ترادف اسیدآمینه ها بر اساس کد سه حرفی در این دو مونومر Aβ (1-40) و (Aβ (1-40) که در شکل های ۲ و ۳ نشان داده شده است برگرفته از بانک اطلاعات پروتئین⁶ است. در -1) Aβ (24 دو هسته هیدروفوبیک در محدوده دنباله ۱۷ الی ۲۱ و ۳۳ الی ۴۲ گزارش شده است. شبیه سازی روی دو نوع مونومر در حلال آب براساس فلوچارت نمایش داده شده در شکل ۴، توسط نرم افزار GROMACS (Version 4.6.5) crom و ۳۱۰ فشار ثابت ۱ بار انجام می شود. (۳۳)

⁵⁻ Bovine pancreatic trypsin

⁶⁻ Protein data bank

1BA4 و TYIT به عنوان ساختار اولیه محلول مونومر آمیلوئید بتا استخراج شدند. برای کاهش زمان شبیه سازی، ساختار اولیه در سلول واحد اکتاهدرن قرار می گیرد تا حداقل مولکول های آب اضافه شود، زیرا این شکل هندسی در مقایسه با مکعب به کره نزدیک تر است و برای مطالعه پروتئین ها در محلول از نظر زمان اجرا اقتصادی تر می باشد. شبیه سازی تحت شرایط مرزی و با حجم ثابت (NVT) صورت می گیرد. کوپلینک دمائی در ۱/۰ پیکوثانیه انجام می شود. برای دیدن فضای صورت بندی بیش تر در زمان کوتاه شبیه سازی دمای ۳۱۰ کلوین با الگوریتم برندزن^{۱۰} انتخاب می شود. فشار به کمک الگوریتم برندزن¹در ۱ بار ثابت می ماند. تغییرهای ساختاری، RMSD کربن آلفا، شعاع ژیراسیون و سطح قابل دسترس حلال و انرژی آزاد گیبس

همه شبیه سازی ها در چند مرحله با بهینه سازی انرژِی به کمک الگوریتم شیک به تعادل می رسد تا پروتئین عاری از فشارهای ممکنه گردد. به دلیل افت دما باید به طور حتم تصحیح دما و فشار انجام شود. این مهم به کمک الگوریتم های، برندزن، پارینلو^{۱۱} و نوز هاور^{۱۲} صورت می گیرد. (۳،۴،۳۰)

بحث

آخرین مرحله شبیه سازی شامل تجزیه و تحلیل تراژکتوری^{۱۲} مدل ها می باشد. به این منظور انعطاف پذیری و پایداری کلی پروتئین، شعاع ژیراسیون و انرژی و سطح قابل دسترس حلال مورد بررسی قرار گرفت.

جذر میانگین مربع انحرافات^{۱۰} RMSD نسبت به ساختار اولیه در طول شبیه سازی یکی از شاخص های مهم در تراژکتوری مدل ها می باشد. در واقع RMSD ، میزان انحراف موقعیت ذرات نسبت به موقعیت مرجع در هر نقطه از زمان را نشان می دهد. در حالت تعادل مقدار تغییرهای RMSD کربن آلفا بایستی کم تر مالت تعادل مقدار تغییرهای RMSD برای یک یا گروهی از اتم ها در طول شبیه سازی بیش تر باشد، میزان تغییرهای ساختاری آن ها در طول شبیه سازی بیش تر خواهد بود. به عبارت دیگر میزان شیب نمودار RMSD بیان کننده پایداری مدل در طول شبیه سازی است. هرچه شیب به صفر نزدیک تر باشد مدل شبیه سازی شده پایدارتر است. هرچه شیب به تدریج افزایش یابد یا نوسان زیادی داشته باشد مدل ناپایدارتر خواهد بود. (۵)

10- Brendsen

13- Trajectory

14- Root mean square deviation

در ابتدای شبیه سازی تلاطم ساختاری است بعد هر دو مدل به حالت فلت^{۱۵} می رسند. جهش تیز در ۵۰ پیکوثانیه اول نشان می دهد بهینه سازی انرژی به خوبی انجام شده است. مسطح شدن منحنی بعد از ۳ نانوثانیه نشان می دهد سیستم به حالت ساختاری پایایی رسیده است. در ۱۰ نانو ثانیه افزیش RMSD در مدل (Aβ (1-42 دیده می شود که می تواند مربوط به تاخوردگی جدید و حصول ساختاری با صورت بندی دیگری باشد که با سستی و انعطاف پذیری بیش تر همراه است و ناشی از افزایش فقط دو اسیدآمینه در انتهای زنجیره (که مربوط به عمل کرد آنزیم و محل جدایی گاما -سکرتاز) است که تبدیل مدل $A\beta$ (1-42) مدل مستعد تجمع مدل مستعد تجمع هستند را افزایش دهد. افزایش تغییرهای شیب که بیان گر تغییرهای ساختاری و شل شدگی است از نظر آماری احتمال حصول ساختارهای متفاوت و معیوب را بالا می برد. به عبارت دیگر تا قبل از ۱۰ نانوثانیه حالت های خاصی از صورت بندی است بعد از آن یک حالت های دیگری است که شلی ساختاری بیش تری دارند و این شرایط را برای تجمع در (Aβ (1-42) مطلوب تر مي كند.

مودار ۱- RMSD کربن آلفا برحسب زمان شبیه سازی برای (PN درجه کلوین خط ممتد مشکی و (P1 د) Aβ خط چین در دمای ۳۱۰ درجه کلوین همان طور که در نمودار ۱ مشاهده می شود محدوده فلت در مدل (P1-1) Aβ در مقدار بالاتری قرار دارد که تایید کننده دینامیک ساختاری بالای آن است و می تواند با احتمال بیش تری ساختارهای صورت بندی معیوب را تجربه می کنند. این شرایط امکان برهم کنش بین مولکولی با مونومر مشابه را بیش تر می کند و بنابراین امکان تجمع بالا می رود.

سطح قابل دسترس حلال^{۱۶} (SASA)از خواص مهم در بررسی تغییرهای ساختاری می باشد. نمودار ۲، سطح قابل دسترس حلال بر حسب زمان را نمایش می دهد.

15- Flat16- Solvent accessible surface area

¹¹⁻Parinello

¹²⁻Nose- Hoover

نمودار ۲- سطح قابل دسترس حلال برحسب زمان شبیه سازی برای (1-42 خط ممتد مشکی و (1-40) Aβ خط چین در دمای ۳۱۰ درجه کلوین، نمودار بالا سطح قابل دسترس هیدروفوبیک و نمودار پایینی سطح قابل دسترس هیدروفیلیک

همان طور که ملاحظه می نمایید، سطح قابل دسترس مدل ۴۰–۱ هم در اسید آمیته های هیدروفوبیک هم در اسید آمینه های هیدرو فیلیک بیش تر از مدل ۴۲–۱ است. این یافته برهم کنش دو هسته هیدروفوبیک مدل ۴۲–۱ و قرار گرفتن مونومر رو هم و برهم کنش بین آن ها را تایید می کند. این موضوع با کاهش سطح قابل دسترس و افزایش استعداد تجمع ۳–۱ همراه است. این یافته با کاهش شعاع ژیراسیون در شکل ۳ مدل ۴۲–۱ مطابقت دارد.

برای بررسی میزان تراکم ساختار پروتئین ، شعاع ژیراسیون بررسی می شود .در واقع شعاع ژیراسیون میزان فاصله کربن آلفا با اتم های اطراف را ارائه می کند. همان طور که در نمودار ۳ ملاحظه می شود شعاع زیراسیون (Δ0-1)βA از شعاع ژیراسیون (Δ0-1)βA در انتهای زمان شبیه سازی که سیستم به تعادل ساختاری می رسد بیش تر است شیب تیزی که در ۵۰ پیکو ثانیه در شعاع ژیراسیون هر دو ساختار دیده می شود، در کم می دهد سیستم به تعادل ساختاری نزدیک شده است. بعد از تر ۳ نانوثانیه نمودار دیگر تغییرهای چندانی نمی کند که نشان می دهد سیستم به تعادل ساختاری نزدیک شده است. بعد از آن به برهم کنش های بین دو هسته هیدروفوبیک در محدوده آن به برهم کنش های بین دو هسته هیدروفوبیک در محدوده با داده های ASAS در شکل ۲ در توافق است. از این مطلب می توان نتیجه گرفت که کانفورماسیون های معیوب ساختاری در توان نتیجه گرفت که کانفورماسیون های معیوب ساختاری در

توانند زمینه تجمع را در این گونه فراهم سازند که از علل اصلی بیماری آلزایمر می باشد.

نمودار ۳- شعاع ژیراسیون کربن آلفا برحسب زمان شبیه سازی برای -Aβ(1 (42 خط ممتد مشکی و Aβ(1-40) خط چین در دمای ۳۱۰ درجه کلوین نتیجه گیری

Aβ (1- مناله به منظور مقایسه استعداد تجمع منومر -1) Aβ (42 و (40-1) Aβ، است. مقایسه نتایج سطح قابل دسترس حلال نشان می دهد گونه (42-1) Aβ کاندید مناسبی برای برهم کنش های بین مولکولی است و می توانند زمینه تجمع را در این گونه فراهم سازند که از علل اصلی آسیب رسانی به سیستم اعصاب مرکزی می باشد. نتایج بررسی RMSD نشان می دهد که تغییرهای ساختاری و انعطاف پذیری(4-1) Aβ بیش تر است.

بررسی تغییرهای شعاع ژیراسیون بر حسب زمان نشان می دهد شعاع ژیراسیون (Aβ (1-42 کم تر از (Aβ (1-40) است که بر هم کنش هیدروفوبیک درون پپتیدی را نشان می دهد. سطح قابل دسترس حلال در این دو گونه تاییدی بر افزایش برهم کنش های هیدروفوبیک در (Aβ (1-42) است.

سپاسگزاری

از معاونت پژوهشی دانشگاه آزاد اسلامی و دانشکده علوم پایه دانشگاه آزاد واحد مرکز نهایت تشکر را داریم. هم چنین از بخش بیوانفورماتیک مرکز بین المللی مهندسی ژنتیک و بیوتکنولوژِی تهران پژوهشکده ملی مهندسی ژنتیک و آقای مهندس محمد مهدی وفایی نائینی تشکر و قدردانی می شود.

منابع

1. Alzheimer's disease facts and figures. Alzheimer's & dementia: the journal of the Alzheimer's Association, 2014.9(2): p. 208-245.

2. Annaert W., Strooper B. De., A Cell Biological Perspective on Alzheimer's disease. Annu. Rev. Cell Dev. Biol,2002. 18(1): p. 25–51.

3. Barsegov V., Computer Simulations of Proteins: All-Atom and Coarse-Grained Models. Department of Chemistry University of Massachusetts Lowell, 2008

4. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath J. Chem. Phys., 1984. 81(8): p. 3684-90.

5. Carugo O., Pongor S. A normalized rootmean-spuare distance for comparing protein threedimensional structures.Protein Sci., 2001. 10(7): P. 1470-3.

 Colacino S., Tiana G., Broglia R. A., et al. The Determinants of Stability in the Human Prion Protein: Insights into Folding and Misfolding from the Analyof the Change in the Stabilization Energy Distribution in Different conditions. PROTEINS: Structure, Function, and Bioinformatics, 2006.
p. 698–707.

7. DeMarco ML, Daggett V. from conversion to aggregation: Protofibril formation of the prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(8): p. 2293-8.

8. F. M. LaFerla, K. N. Green, and S. Oddo. Intracellular amyloid in Alzheimer's disease. Nature Rev. Neurosci,2007.8(7): p. 499–509.

9. Frenkel DS, B., Understanding molecular simulation: from algorithms to applications. Academic Press: San Diego.Second Edition Amazon New York, 1996

 Gallicchio, E.; Levy, R. M., Recent theoretical and computational advances for modeling protein– ligand binding affinities. In Advances in Protein Chemistry and Structural Biology, Christo, C., Ed. Academic Press 2011; Vol. Volume 85, pp 27-80.

11. Gsponer J, Ferrara P, Caflisch A. Flexibility of the murine prion protein and its Asp178Asn mutant investigated by Molecular dynamics simulations. J MOL GRAPH MODEL, 2001. 20(2): p. 169-82

12. Hardy J., and Selkoe D. J. The Amyloid Hypothesis of Alzheimer's disease: Progress and Problems on the Road to therapeutics. SCIENCE. 2002. 297 (19): p. 352-56

13. Harrington C. R.The Molecular Pathology of Alzheimer's disease. NEUROIMAG CLIN N AM, 2012. 22(1): p. 11-22.

14. Hess B., Bekker H., Berendsen HJC., Fraaije JGEM. LINCS: A Linear Constraint Solver for molecular simulations.J. Comput. Chem., 1997. 18(12): p. 1463-72.

15. http://en.wikipedia.org/wiki/Proteins

16. <u>http://www.ch.embnet.org/MD_tutorial/</u>

17. Jaros aw Meller, ENCYCLOPEDIA OF LIFE SCIENCES/&2001 Nature Publishing Group/ www.els.ne

18. Karplus M. and McCammon J. A., Molecular dynamics simulations of biomolecules. NAT STRUCT BIOL, 2002.9(9): p. 646,

19. Kittner. M., Folding and Aggregation of Amyloid Peptides. Potsdam, im April 2011

20. Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H. NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106-126. Proceedings of the National Academy of Sciences of the United States of America. 2003. 100(25): p. 14790-5.

Lopez De La Paz M, De Mori GMS, Serrano L, Colombo G. Sequence dependence of amyloid fibril formation: Insights from molecular dynamics simulations. J. Mol. Biol., 2005. 349(3): p. 583-96.
Miyamoto S., Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 1992. 13 (8): p. 952–962.

23. Parsa N. Alzheimer's disease: A medical challenge of 21st century, A.M.U. J., 2011. 14 (2): p. 100-108. (In Persian).

24. Prusiner SB. Molecular biology of prion diseases. Science252 .1991 و: p.1515–22.

25. Riek R. GW., Billeter M., Hornemann S., et al. Prion protein NMR structure and familial human spongiform encephalopathies, 1998. 95:p. 11667–72.

26. Sekijima M, Motono C, Yamasaki S, Kaneko K, Akiyama Y. Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: Insight into dynamics and properties. Biophys. J., 2003. 85(2): p. 1176-85.

27. Van der Spoel, D., Lindahl, E., Hess, B., Buuren A. R. v., Apol E., Meulenhoff P. J., et al. GROMACS USER MANUAL Version 3.3.

28. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C., GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005. 26 (16): p. 1701-1718.

29. www.rcsb.org

30. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free, Journal of Computational Chemistry16)26 .2005 .): p. 1701-18.34

31. Vitagliano L., et al. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular Dynamics: Antiparallel versus parallel association. Biochem. Biophys. Res. Commun., 2008. 377: p. 1036-41.

32. Vladimir A. L. F., Uversky N., Protein Misfolding, Aggregation, and Conformational Diseases: Springer US, 2007

33. <u>www.gromacs.org</u>

Downloaded from nembjpiau.ir on 2025-07-05