دوره 11، شماره 41 - ( 9-1399 )                   جلد 11 شماره 41 صفحات 102-83 | برگشت به فهرست نسخه ها

XML English Abstract Print


گروه میکروبیولوژی ، شاخه بناب ، دانشگاه ازاد اسلامی ، بناب ، ایران
چکیده:   (3105 مشاهده)
سلول های بنیادی سرطانی که سلول های آغازکننده تومور هم شناخته می شوند جمعیت کوچکی از سلول های سرطانی می باشند که توانایی تجدید خود و تمایز به سلول های بنیادی نرمال را دارند. مقاومت بالای سلول های بنیادی سرطانی نسبت به درمان های رایج از قبیل رادیوتراپی و شیمی درمانی یکی ازمشکلات اساسی در نابودی سرطان و عود مجدد می باشد. سلول های بنیادی سرطانی موجود در ریز محیط تومورها از طریق تقسیم نابرابر باعث تشکیل سلول های توموری جدید با خصوصیات متفاوت از نظر ژنتیکی و متابولیتی خواهد شد. بنابراین درمانهایی که مبتنی بر کنترل تکثیر و تمایز سلولهای بنیادی سرطانی باشد را بایدجستجو کرد. در این مقاله مروری ، بر بررسی فنوتیب و متابولیسم سلولهای بنیادی سرطانی پرداخته شده و روشهای درمانی مبتنی برکنترل متابولیسم جهت حذف سلولهای بنیادی سرطانی در ریزمحیط تومور بیان شده است.
متن کامل [PDF 500 kb]   (1496 دریافت) |   |   متن کامل (HTML)  (4793 مشاهده)  
نوع مطالعه: مقاله مروری | موضوع مقاله: سلولی و مولکولی
دریافت: 1399/11/11 | پذیرش: 1399/9/10 | انتشار: 1399/9/10

فهرست منابع
1. Fujimaki K, Yao G. Crack the state of silence: Tune the depth of cellular quiescence for cancer therapy. Molecular & cellular oncology. 2018;5(1):e1403531.
2. Liu Q, Gu J, Zhang E, He L, Yuan Z-x. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Current Pharmaceutical Design. 2020.
3. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells—what challenges do they pose? Nature reviews Drug discovery. 2014;13(7):497-512.
4. Brooks MD, Burness ML, Wicha MS. Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell stem cell. 2015;17(3):260-71.
5. Brooks MD, Wicha MS. Tumor twitter: cellular communication in the breast cancer stem cell niche. Cancer discovery. 2015;5(5):469-71.
6. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA: a cancer journal for clinicians. 2019;69(5):363-85.
7. Borah A, Raveendran S, Rochani A, Maekawa T, Kumar D. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis. 2015;4(11):e177-e.
8. Yuan S, Wang F, Chen G, Zhang H, Feng L, Wang L, et al. Effective elimination of cancer stem cells by a novel drug combination strategy. Stem Cells. 2013;31(1):23-34.
9. Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N. From tumor cell metabolism to tumor immune escape. The international journal of biochemistry & cell biology. 2013;45(1):106-13.
10. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703-7.
11. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nature Reviews Cancer. 2016;16(10):635.
12. Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2011;1807(6):568-76.
13. Hayashi Y, Yokota A, Harada H, Huang G. Hypoxia/pseudohypoxia‐mediated activation of hypoxia‐inducible factor‐1α in cancer. Cancer science. 2019;110(5):1510.
14. Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer research. 2006;66(12):5977-80.
15. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). International journal of cancer. 1978;21(3):274-81.
16. Parks SK, Mueller-Klieser W, Pouysségur J. Lactate and acidity in the cancer microenvironment. Annual Review of Cancer Biology. 2020;4:141-58.
17. Maulana AF. Clinical and Molecular Effects of mtDNA Mutations in Humans. 2020.
18. Ko YS, Jin H, Lee JS, Park SW, Chang KC, Kang KM, et al. Radioresistant breast cancer cells exhibit increased resistance to chemotherapy and enhanced invasive properties due to cancer stem cells. Oncology Reports. 2018;40(6):3752-62.
19. Vessoni AT, Filippi-Chiela EC, Lenz G, Batista LFZ. Tumor propagating cells: drivers of tumor plasticity, heterogeneity, and recurrence. Oncogene. 2020;39(10):2055-68.
20. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer cell. 2005;8(4):323-35.
21. Wilting RH, Dannenberg J-H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resistance Updates. 2012;15(1-2):21-38.
22. Csermely P, Hódsági J, Korcsmáros T, Módos D, Perez-Lopez ÁR, Szalay K, et al., editors. Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence. Seminars in cancer biology; 2015: Elsevier.
23. Steinbichler TB, Savic D, Dudás J, Kvitsaridze I, Skvortsov S, Riechelmann H, et al., editors. Cancer stem cells and their unique role in metastatic spread. Seminars in cancer biology; 2020: Elsevier.
24. Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacology & therapeutics. 2016;158:71-90.
25. Toh TB, Lim JJ, Chow EK-H. Epigenetics in cancer stem cells. Molecular cancer. 2017;16(1):29.
26. Johannessen T-CA, Bjerkvig R, Tysnes BB. DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer treatment reviews. 2008;34(6):558-67.
27. Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer research. 2006;66(9):4553-7.
28. Ioannou M, Serafimidis I, Arnes L, Sussel L, Singh S, Vasiliou V, et al. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Developmental biology. 2013;374(1):153-63.
29. Afify SM, Seno M. Conversion of stem cells to cancer stem cells: undercurrent of cancer initiation. Cancers. 2019;11(3):345.
30. Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: An updated review. Cells. 2020;9(8):1896.
31. Yip N, Fombon I, Liu P, Brown S, Kannappan V, Armesilla A, et al. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. British journal of cancer. 2011;104(10):1564-74.
32. Zhang S, Yang Z, Qi F. Aldehyde dehydrogenase-positive melanoma stem cells in tumorigenesis, drug resistance and anti-neoplastic immunotherapy. Molecular Biology Reports. 2020:1-9.
33. Shibata M, Hoque MO. Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers. 2019;11(5):732.
34. Boesch M, Zeimet AG, Rumpold H, Gastl G, Sopper S, Wolf D. Drug transporter‐mediated protection of cancer stem cells from ionophore antibiotics. Stem cells translational medicine. 2015;4(9):1028-32.
35. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast Cancer Research. 2008;10(1):R10.
36. Moitra K. Overcoming multidrug resistance in cancer stem cells. BioMed research international. 2015;2015.
37. Sun H, Wang S, Yan S, Zhang Y, Nelson PJ, Jia H, et al. Therapeutic strategies targeting cancer stem cells and their microenvironment. Frontiers in oncology. 2019;9:1104.
38. Sun Q, Wang Y, Desgrosellier JS. Combined Bcl-2/Src inhibition synergize to deplete stem-like breast cancer cells. Cancer letters. 2019;457:40-6.
39. Dzobo K, Senthebane DA, Rowe A, Thomford NE, Mwapagha LM, Al-Awwad N, et al. Cancer stem cell hypothesis for therapeutic innovation in clinical oncology? Taking the root out, not chopping the leaf. Omics: a journal of integrative biology. 2016;20(12):681-91.
40. Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill cancer cells? Journal of cell science. 2009;122(15):2579-85.
41. Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN, et al. Inhibition of Ataxia Telangiectasia‐and Rad3‐related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133+ tumor‐initiating cell fraction. Stem Cells. 2011;29(3):418-29.
42. Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Letters. 2020;474:106-17.
43. Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D, et al. Ovarian cancer stem cell–like side populations are enriched following chemotherapy and overexpress EZH2. Molecular cancer therapeutics. 2011;10(2):325-35.
44. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522-6.
45. Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci–Vitiani L, et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 2011;140(1):297-309. e6.
46. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay R, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene. 2009;28(45):3949-59.
47. Phi LTH, Sari IN, Yang Y-G, Lee S-H, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem cells international. 2018;2018.
48. Heddleston J, Li Z, Lathia J, Bao S, Hjelmeland A, Rich J. Hypoxia inducible factors in cancer stem cells. British journal of cancer. 2010;102(5):789-95.
49. Lee SH, Do SI, Lee HJ, Kang HJ, Koo BS, Lim YC. Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma. Laboratory investigation. 2016;96(5):508-16.
50. D'Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Molecular cancer therapeutics. 2015;14(3):779-87.
51. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829-33.
52. Chatterjee A, Rodger EJ, Eccles MR, editors. Epigenetic drivers of tumourigenesis and cancer metastasis. Seminars in cancer biology; 2018: Elsevier.
53. Dawson MA. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science. 2017;355(6330):1147-52.
54. Möller M, Schotanus K, Soyer JL, Haueisen J, Happ K, Stralucke M, et al. Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLoS genetics. 2019;15(4):e1008093.
55. . Li F, Wu R, Cui X, Zha L, Yu L, Shi H, et al. Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. Journal of Biological Chemistry. 2016;291(9):4523-36.
56. Pan Y, Ma S, Cao K, Zhou S, Zhao A, Li M, et al. Therapeutic approaches targeting cancer stem cells. Journal of Cancer Research and Therapeutics. 2018;14(7):1469.
57. Ghoshal P, Nganga AJ, Moran-Giuati J, Szafranek A, Johnson TR, Bigelow AJ, et al. Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer research. 2009;69(10):4380-7.
58. Zhang J, Yuan B, Zhang H, Li H. Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance. Oncology letters. 2019;17(6):5351-60.
59. . Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and Noncoding RNAs in the Epithelial–mesenchymal Transition and Progression in Gastric Cancer. International journal of molecular sciences. 2019;20(12):2870.
60. Massagué J. TGFβ signalling in context. Nature reviews Molecular cell biology. 2012;13(10):616-30.
61. Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, et al. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. Journal of Experimental Medicine. 2018;215(4):1153-68.
62. Yu H, Zhang C, Wu Y. Research progress in cancer stem cells and their drug resistance. Chinese journal of cancer. 2010;29(3):261.
63. Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Frontiers in oncology. 2014;4:262.
64. Margineantu DH, Hockenbery DM. Mitochondrial functions in stem cells. Current Opinion in Genetics & Development. 2016;38:110-7.
65. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer-Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nature communications. 2016;7(1):1-13.
66. Batlle E, Clevers H. Cancer stem cells revisited. Nature medicine. 2017;23(10):1124.
67. De Francesco EM, Sotgia F, Lisanti MP. Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochemical Journal. 2018;475(9):1611-34.
68. Luo M, Wicha MS. Metabolic plasticity of cancer stem cells. Oncotarget. 2015;6(34):35141.
69. Grazia Cipolleschi M, Marzi I, Santini R, Fredducci D, Cristina Vinci M, D'Amico M, et al. Hypoxia-resistant profile implies vulnerability of cancer stem cells to physiological agents, which suggests new therapeutic targets. Cell cycle. 2014;13(2):268-78.
70. Jones CL, Stevens BM, D'Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018;34(5):724-40. e4.
71. Ye H, Adane B, Khan N, Sullivan T, Minhajuddin M, Gasparetto M, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell stem cell. 2016;19(1):23-37.
72. Krishan S, Richardson DR, Sahni S. Adenosine monophosphate–activated kinase and its key role in catabolism: Structure, regulation, biological activity, and pharmacological activation. Molecular pharmacology. 2015;87(3):363-77.
73. Toyama EQ, Herzig S, Courchet J, Lewis TL, Losón OC, Hellberg K, et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351(6270):275-81.
74. Yan C, Li T-S. Dual role of mitophagy in cancer drug resistance. Anticancer research. 2018;38(2):617-21.
75. Guo B, Tam A, Santi SA, Parissenti AM. Role of autophagy and lysosomal drug sequestration in acquired resistance to doxorubicin in MCF-7 cells. BMC cancer. 2016;16(1):762.
76. Naik PP, Mukhopadhyay S, Panda PK, Sinha N, Das CK, Mishra R, et al. Autophagy regulates cisplatin‐induced stemness and chemoresistance via the upregulation of CD 44, ABCB 1 and ADAM 17 in oral squamous cell carcinoma. Cell proliferation. 2018;51(1):e12411.
77. Yan C, Luo L, Guo C-Y, Goto S, Urata Y, Shao J-H, et al. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer letters. 2017;388:34-42.
78. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nature neuroscience. 2015;18(4):501.
79. Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S, et al. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science. 2015;348(6232):340-3.
80. Jang Y-Y, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056-63.
81. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell death & disease. 2014;5(7):e1336-e.
82. Emmink BL, Verheem A, Van Houdt WJ, Steller EJ, Govaert KM, Pham TV, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes. Journal of proteomics. 2013;91:84-96.
83. Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PloS one. 2014;9(1):e84941.
84. Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proceedings of the National Academy of Sciences. 2006;103(31):11567-72.
85. Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, et al. Cyclin D1 determines mitochondrial function in vivo. Molecular and cellular biology. 2006;26(14):5449-69.
86. Lee W, St John J. The control of mitochondrial DNA replication during development and tumorigenesis. Ann NY Acad Sci. 2015;1350(95):106.
87. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2016;12(1):1-222.
88. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO journal. 2008;27(2):433-46.
89. Liu K, Lee J, Kim JY, Wang L, Tian Y, Chan ST, et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Molecular cell. 2017;68(2):281-92. e5.
90. Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. British journal of cancer. 2016;114(12):1305-12.
91. Skoda J, Borankova K, Jansson PJ, Huang ML-H, Veselska R, Richardson DR. Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacological research. 2019;139:298-313.
92. Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6(7):4569.
93. Mayer M, Klotz L, Venkateswaran V. Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer and Prostatic Diseases. 2015;18(4):303-9.
94. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. elife. 2014;3:e02242.
95. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer research. 2009;69(19):7507-11.
96. Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Current opinion in microbiology. 2014;22:38-48.
97. An H, Kim JY, Oh E, Lee N, Cho Y, Seo JH. Salinomycin promotes anoikis and decreases the CD44+/CD24-stem-like population via inhibition of STAT3 activation in MDA-MB-231 cells. PloS one. 2015;10(11):e0141919.
98. Lamb R, Harrison H, Hulit J, Smith DL, Lisanti MP, Sotgia F. Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 2014;5(22):11029.
99. Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, et al. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrobial agents and chemotherapy. 2009;53(3):1290-2.
100. Fiorillo M, Lamb R, Tanowitz HB, Cappello AR, Martinez-Outschoorn UE, Sotgia F, et al. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging (Albany NY). 2016;8(8):1593.
101. Zhou J, Li G, Zheng Y, Shen H-M, Hu X, Ming Q-L, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy. 2015;11(8):1259-79.
102. Sancho P, Burgos-Ramos E, Tavera A, Kheir TB, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell metabolism. 2015;22(4):590-605.
103. Carlisi D, Buttitta G, Di Fiore R, Scerri C, Drago-Ferrante R, Vento R, et al. Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell death & disease. 2016;7(4):e2194-e.
104. Liao K, Xia B, Zhuang Q-Y, Hou M-J, Zhang Y-J, Luo B, et al. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-κB/COX-2 pathway. Theranostics. 2015;5(3):302.
105. Carlisi D, De Blasio A, Drago-Ferrante R, Di Fiore R, Buttitta G, Morreale M, et al. Parthenolide prevents resistance of MDA-MB231 cells to doxorubicin and mitoxantrone: the role of Nrf2. Cell death discovery. 2017;3(1):1-12.
106. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105(11):4163-9.
107. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature medicine. 2012;18(9):1350.
108. Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. Journal of Experimental & Clinical Cancer Research. 2018;37(1):118.
109. Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature medicine. 2016;22(4):427-32.
110. Currie E, Schulze A, Zechner R, Walther TC, Farese Jr RV. Cellular fatty acid metabolism and cancer. Cell metabolism. 2013;18(2):153-61.
111. Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell metabolism. 2018;27(1):136-50. e5.
112. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. The Journal of clinical investigation. 2010;120(1):142-56.
113. Lee EA, Angka L, Rota S-G, Hanlon T, Mitchell A, Hurren R, et al. Targeting mitochondria with avocatin B induces selective leukemia cell death. Cancer research. 2015;75(12):2478-88.
114. Safa AR. Resistance to cell death and its modulation in cancer stem cells. Critical Reviews™ in Oncogenesis. 2016;21(3-4).
115. Gilormini M, Malesys C, Armandy E, Manas P, Guy J-B, Magné N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7(13):16731.
116. Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Science translational medicine. 2016;8(355):355ra117-355ra117.
117. Roberts A, Huang D. Targeting BCL2 with BH3 mimetics: basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clinical Pharmacology & Therapeutics. 2017;101(1):89-98.
118. Kipps TJ, Eradat H, Grosicki S, Catalano J, Cosolo W, Dyagil IS, et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leukemia & lymphoma. 2015;56(10):2826-33.
119. Chen Q, Song S, Wei S, Liu B, Honjo S, Scott A, et al. ABT-263 induces apoptosis and synergizes with chemotherapy by targeting stemness pathways in esophageal cancer. Oncotarget. 2015;6(28):25883.
120. Daniele S, Pietrobono D, Costa B, Giustiniano M, La Pietra V, Giacomelli C, et al. Bax activation blocks self-renewal and induces apoptosis of human glioblastoma stem cells. ACS chemical neuroscience. 2018;9(1):85-99.
121. Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of bax protein for cancer therapy. Medicinal research reviews. 2016;36(2):313-41.
122. Madjd Z, Mehrjerdi AZ, Sharifi AM, Molanaei S, Shahzadi SZ, Asadi-Lari M. CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours. Cancer Immunity Archive. 2009;9(1).
123. Konopleva M, Zhao S, Hu W, Jiang S, Snell V, Weidner D, et al. The anti‐apoptotic genes Bcl‐XL and Bcl‐2 are over‐expressed and contribute to chemoresistance of non‐proliferating leukaemic CD34+ cells. British journal of haematology. 2002;118(2):521-34.
124. Danial NN, Gramm CF, Scorrano L, Zhang C-Y, Krauss S, Ranger AM, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 2003;424(6951):952-6.
125. Sastry K, Al-Muftah M, Li P, Al-Kowari M, Wang E, Chouchane AI, et al. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death & Differentiation. 2014;21(12):1936-49.
126. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surgical oncology. 2010;19(1):27-32.
127. Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resistance Updates. 2016;26:1-9.
128. Begicevic R-R, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. International journal of molecular sciences. 2017;18(11):2362.
129. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer research. 2005;65(10):4320-33.
130. Tang R, Faussat A-M, Perrot J-Y, Marjanovic Z, Cohen S, Storme T, et al. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML). BMC cancer. 2008;8(1):51.
131. Shackleton M, editor Normal stem cells and cancer stem cells: similar and different. Seminars in cancer biology; 2010: Elsevier.
132. Akhtari J, Ebrahimnejad P, Rafiei A. A Review on the Use of Nanoparticles in the Release of Growth Factors. Journal of Mazandaran University of Medical Sciences. 2015;24(122):424-39.
133. Akhtari J, Abastabar M, Abediankenari S. Application of Nanocarriers in Immunogenicity against Diseases. Journal of Mazandaran University of Medical Sciences. 2015;24(121):431-45.
134. Koshiji M, To KK-W, Hammer S, Kumamoto K, Harris AL, Modrich P, et al. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Molecular cell. 2005;17(6):793-803.
135. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG. A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer biology & therapy. 2011;11(5):464-73.
136. Alavizadeh SH, Akhtari J, Badiee A, Golmohammadzadeh S, Jaafari MR. Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert opinion on drug delivery. 2016;13(3):325-36.
137. Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug resistance updates. 2011;14(3):150-63.
138. Aryal S, Bisht G. New paradigm for a targeted cancer therapeutic approach: a short review on potential synergy of gold nanoparticles and cold atmospheric plasma. Biomedicines. 2017;5(3):38.
139. Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomedicine & Pharmacotherapy. 2019;116:109006.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.