1. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. The Korean journal of internal medicine. 2016 Jul;31(4):643. doi: 10.3904/kjim.2016.015
2. Lavine KJ, Sierra OL. Skeletal muscle inflammation and atrophy in heart failure. Heart failure reviews. 2017 Mar; 22:179-89. doi.org/10.1007/s10741-016-9593-0
3. Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal muscle abnormalities in heart failure. International heart journal. 2015;56(5):475-84.
4. Weiss K, Schär M, Panjrath GS, Zhang Y, Sharma K, Bottomley PA, Golozar A, Steinberg A, Gerstenblith G, Russell SD, Weiss RG. Fatigability, exercise intolerance, and abnormal skeletal muscle energetics in heart failure. Circulation: Heart Failure. 2017 Jul;10(7):e004129 [
DOI:10.1161/CIRCHEARTFAILURE.117.004129.]
5. Fukui A, Kawabe N, Hashimoto S, Kamei H, Yoshioka K. Skeletal muscle mass depletion in patients with hepatitis C virus infection. European Journal of Gastroenterology & Hepatology. 2019 Jan 1;31(1):59-66. doi.org/10.1097/MEG.0000000000001255
6. Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcified tissue international. 2018 Apr;102(4):433-42. doi.org/10.1007/s00223-017-0345-5
7. Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S. Computational reconstruction of the human skeletal muscle secretome. PROTEINS: Structure, Function, and Bioinformatics. 2006 Feb 15;62(3):776-92. doi.org/10.1002/prot.20803
8. Gibb AA, Epstein PN, Uchida S, Zheng Y, McNally LA, Obal D, Katragadda K, Trainor P, Conklin DJ, Brittian KR, Tseng MT. Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation. 2017 Nov 28;136(22):2144-57. doi.org/10.1161/CIRCULATIONAHA.117.028274
9. Lobelo F, Stoutenberg M, Hutber A. The exercise is medicine global health initiative: a 2014 update. British journal of sports medicine. 2014 Dec 1;48(22):1627-33. doi.org/10.1136/bjsports-2013-093080
10. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological reviews. 2008 Oct;88(4):1379-406. doi.org/10.1152/physrev.90100.2007
11. Pedersen BK, Saltin B. Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports. 2015 Dec;25:1-72 ... doi.org/10.1111/sms.12581
12. Sääkslahti A, Numminen P, Varstala V, Helenius H, Tammi A, Viikari J, Välimäki I. Physical activity as a preventive measure for coronary heart disease risk factors in early childhood. Scandinavian journal of medicine & science in sports. 2004 Jun;14(3):143-9.doi.org/10.1111/j.1600-0838.2004.00347.x
13. Sallis RE. Exercise is medicine and physicians need to prescribe it! . British journal of sports medicine. 2009 Jan 1;43(1):3-4. doi.org/10.1136/bjsm.2008.054825
14. Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harbor perspectives in medicine. 2017 Nov 1;7(11):a029793. doi.org/10.1101/cshperspect.a029793
15. Iizuka K, Machida T, Hirafuji M. Skeletal muscle is an endocrine organ. Journal of pharmacological sciences. 2014 Jun 20;125(2):125-31.
16. Karstoft K, Pedersen BK. Skeletal muscle as a gene regulatory endocrine organ. Current opinion in clinical nutrition and metabolic care. 2016 Jul 1;19(4):270-5. doi.org/10.1097/MCO.0000000000000283
17. Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A, Chen MH. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell metabolism. 2014 Jan 7;19(1):96-108.
18. Abu-Elsaad N, El-Karef A. The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in wistar rats. Inflammation. 2018 Feb;41:221-31. doi.org/10.1007/s10753-017-0680-8
19. Dzau VJ, Swartz SL. Dissociation of the prostaglandin and renin angiotensin systems during captopril therapy for chronic congestive heart failure secondary to coronary artery disease. The American journal of cardiology. 1987 Nov 1;60(13):1101-5. doi.org/10.1016/0002-9149(87)90361-4
20. Middlekauff HR. The treatment of heart failure: the role of neurohumoral activation. Internal medicine. 1998;37(2):112-22.
21. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nature reviews cancer. 2006 Nov 1;6(11):857-66. doi.org/10.1038/nrc1997
22. Cummins JM, Velculescu VE. Implications of micro-RNA profiling for cancer diagnosis. Oncogene. 2006 Oct;25(46):6220-7. doi.org/10.1038/sj.onc.1209914
23. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. cell. 2004 Jan 23;116(2):281-97. doi.org/10.1016/S0092-8674(04)00045-5
24. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics. 2010 Dec;3(6):499-506. doi.org/10.1161/CIRCGENETICS.110.957415
25. D'alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European heart journal. 2010 Nov 1;31(22):2765-73. doi.org/10.1093/eurheartj/ehq167
26. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European heart journal. 2010 Mar 1;31(6):659-66. doi.org/10.1093/eurheartj/ehq013
27. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC, Thum T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of molecular and cellular cardiology. 2011 Nov 1;51(5):872-5. doi.org/10.1016/j.yjmcc.2011.07.011
28. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circulation: Cardiovascular Genetics. 2011 Dec;4(6):614-9. doi.org/10.1161/CIRCGENETICS.111.959841
29. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and biophysical research communications. 2010 Jan 1;391(1):73-7. doi.org/10.1016/j.bbrc.2009.11.005
30. Eitel I, Adams V, Dieterich P, Fuernau G, De Waha S, Desch S, Schuler G, Thiele H. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. American heart journal. 2012 Nov 1;164(5):706-14. doi.org/10.1016/j.ahj.2012.08.004
31. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation: Cardiovascular Genetics. 2011 Aug;4(4):446-54. doi.org/10.1161/CIRCGENETICS.110.958975
32. McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiological genomics. 2009 Nov;39(3):219-26. doi.org/10.1152/physiolgenomics.00042.2009
33. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends in Genetics. 2008 Apr 1;24(4):159-66. doi.org/10.1016/j.tig.2008.01.007
34. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental cell. 2009 Nov 17;17(5):662-73.
35. Duygu B, Da Costa Martins PA. miR-21: a star player in cardiac hypertrophy. Cardiovascular Research. 2015 Mar 1;105(3):235-7. doi.org/10.1093/cvr/cvv026
36. Cao W, Shi P, Ge JJ. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC cardiovascular disorders. 2017 Dec;17:1-1. doi.org/10.1186/s12872-017-0520-7
37. Dong X, Liu S, Zhang L, Yu S, Huo L, Qile M, Liu L, Yang B, Yu J. Downregulation of miR‐21 is Involved in Direct Actions of Ursolic Acid on the Heart: Implications for Cardiac Fibrosis and Hypertrophy. Cardiovascular Therapeutics. 2015 Aug;33(4):161-7. doi.org/10.1111/1755-5922.12125
38. Szemraj-Rogucka ZM, Szemraj J, Masiarek K, Majos A. Circulating microRNAs as biomarkers for myocardial fibrosis in patients with left ventricular non-compaction cardiomyopathy. Archives of Medical Science. 2019 Mar 1;15(2):376-84. doi.org/10.5114/aoms.2019.82919
39. Zanotti S, Gibertini S, Curcio M, Savadori P, Pasanisi B, Morandi L, Cornelio F, Mantegazza R, Mora M. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015 Jul 1;1852(7):1451-64. doi.org/10.1016/j.bbadis.2015.04.013
40. Wei X, Liu X, Rosenzweig A. What do we know about the cardiac benefits of exercise ?. Trends in cardiovascular medicine. 2015 Aug 1;25(6):529-36. doi.org/10.1016/j.tcm.2014.12.014
41. McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A. Protective effects of exercise and phosphoinositide 3-kinase (p110α) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences. 2007 Jan 9;104(2):612-7. doi.org/10.1073/pnas.060666310
42. Lenk K, Erbs S, Höllriegel R, Beck E, Linke A, Gielen S, Winkler SM, Sandri M, Hambrecht R, Schuler G, Adams V. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. European journal of preventive cardiology. 2012 Jun;19(3):404-11. doi.org/10.1177/1741826711402
43. Quindry J, French J, Hamilton K, Lee Y, Mehta JL, Powers S. Exercise training provides cardioprotection against ischemia–reperfusion induced apoptosis in young and old animals. Experimental gerontology. 2005 May 1;40(5):416-25. doi.org/10.1016/j.exger.2005.03.010
44. Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II, Filippaios A, Panagiotou G, Park KH, Mantzoros CS. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of Clinical Endocrinology & Metabolism. 2014 Nov 1;99(11):E2154-61. doi.org/10.1210/jc.2014-1437
45. Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology-Heart and Circulatory Physiology. 2015 Aug 15;309(4):H543-52. doi.org/10.1152/ajpheart.00899.2014
46. Russell AP, Lamon S. Exercise, skeletal muscle and circulating microRNAs. Progress in molecular biology and translational science. 2015 Jan 1;135:471-96 doi.org/10.1016/bs.pmbts.2015.07.018
47. Sandrow-Feinberg HR, Houlé JD. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain research. 2015 Sep 4;1619:12-21. doi.org/10.1016/j.brainres.2015.03.052
48. Wu XD, Zeng K, Liu WL, Gao YG, Gong CS, Zhang CX, Chen YQ. Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. International journal of sports medicine. 2014 Apr;35(04):344-50.
49. Yang F, You X, Xu T, Liu Y, Ren Y, Liu S, Wu F, Xu Z, Zou L, Wang G. Screening and function analysis of MicroRNAs involved in exercise preconditioning-attenuating pathological cardiac hypertrophy. International Heart Journal. 2018 Sep 1;59(5):1069-76.
50. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of applied physiology. 2007 Jan;102(1):306-13. doi.org/10.1152/japplphysiol.00932.2006
51. Wang B, Zhang C, Zhang A, Cai H, Price SR, Wang XH. MicroRNA-23a and microRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. Journal of the American Society of Nephrology: JASN. 2017 Sep;28(9):2631. doi: 10.1681/ASN.2016111213
52. Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Abhari A, Chodari L, Mohaddes G. Cardioprotective effect of crocin combined with voluntary exercise in rat: role of mir-126 and mir-210 in heart angiogenesis. Arquivos brasileiros de cardiologia. 2017 Jun 29;109:54-62.
53. Wang XH. MicroRNA in myogenesis and muscle atrophy. Current opinion in clinical nutrition and metabolic care. 2013 May;16(3):258. doi: 10.1097/MCO.0b013e32835f81b9
54. Soci UP, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics. 2011 Jun;43(11):665-73. doi.org/10.1152/physiolgenomics.00145.2010
55. nD Jr DS, Fernandes T, Soci UP, Monteiro AW, Phillips MI, EM DO. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Medicine and science in sports and exercise. 2012 Aug 1;44(8):1453-62. doi.org/10.1249/mss.0b013e31824e8a36
56. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ, Chan SY. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. The Journal of physiology. 2011 Aug;589(16):3983-94. doi.org/10.1113/jphysiol.2011.213363
57. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Boström P, Che L, Zhang C. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell metabolism. 2015 Apr 7;21(4):584-95.
58. 58Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics. 2017;7(3):664. doi: 10.7150/thno.15162
59. Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J, Li J, Sha J, Chen J, Xia J, Wang L. Longterm exercise-derived exosomal miR-342-5p: a novel exerkine for cardioprotection. Circulation research. 2019 Apr 26;124(9):1386-400. doi.org/10.1161/CIRCRESAHA.118.314635
60. Aydin S, Kuloglu T, Aydin S, Eren MN, Celik A, Yilmaz M, Kalayci M, Sahin İ, Gungor O, Gurel A, Ogeturk M. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle. Peptides. 2014 Feb 1;52:68-73. doi.org/10.1016/j.peptides.2013.11.024
61. Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. American Journal of Physiology-Endocrinology and Metabolism. 2016 Aug 1;311(2):E530-41. doi.org/10.1152/ajpendo.00094.2016
62. Wang L, Lv Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. Journal of sport and health science. 2018 Oct 1;7(4):433-41. doi.org/10.1016/j.jshs.2018.09.008
63. Hartmann P, Ramseier A, Gudat F, Mihatsch MJ, Polasek W. Normal weight of the brain in adults in relation to age, sex, body height and weight. Der Pathologe. 1994 Jun 1;15(3):165-70. doi.org/10.1007/s002920050040
64. Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. Journal of Cerebral Blood Flow & Metabolism. 1992 Mar;12(2):179-92. doi.org/10.1038/jcbfm.1992
65. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, Tinajero CD, Yuan LJ, Zhang R. Distribution of cardiac output to the brain across the adult lifespan. Journal of Cerebral Blood Flow & Metabolism. 2017 Aug;37(8):2848-56. doi.org/10.1177/0271678X16676826
66. Barnes JN. Exercise, cognitive function, and aging. Advances in physiology education. 2015 Jun;39(2):55-62. doi.org/10.1152/advan.00101.2014
67. Raichlen DA, Alexander GE. Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends in neurosciences. 2017 Jul 1;40(7):408-21. DOI: [
DOI:10.1016/j.tins.2017.05.001]
68. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006 Jan 1;140(3):823-33. doi.org/10.1016/j.neuroscience.2006.02.084
69. Li J, Liu Y, Liu B, Li F, Hu J, Wang Q, Li M, Lou S. Mechanisms of aerobic exercise upregulating the expression of hippocampal synaptic plasticity-associated proteins in diabetic rats. Neural plasticity. 2019 Feb 18;2019. doi.org/10.1155/2019/7920540
70. Loprinzi PD, Edwards MK, Frith E. Potential avenues for exercise to activate episodic memory‐related pathways: a narrative review. European Journal of Neuroscience. 2017 Sep;46(5):2067-77. doi.org/10.1111/ejn.13644
71. Robinson MM, Lowe VJ, Nair KS. Increased brain glucose uptake after 12 weeks of aerobic high-intensity interval training in young and older adults. The Journal of Clinical Endocrinology & Metabolism. 2018 Jan;103(1):221-7. doi.org/10.1210/jc.2017-01571
72. Ivanov AD. The role of NGF and BDNF in mature brain activity regulation. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova. 2014 Mar 1;64(2):137-46.
73. Thorin-Trescases N, de Montgolfier O, Pinçon A, Raignault A, Caland L, Labbé P, Thorin E. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. American Journal of Physiology-Heart and Circulatory Physiology. 2018 Jun 1;314(6):H1214-24. doi.org/10.1152/ajpheart.00637.2017
74. Reisberg B, Prichep L, Mosconi L, John ER, Glodzik-Sobanska L, Boksay I, Monteiro I, Torossian C, Vedvyas A, Ashraf N, Jamil IA. The pre–mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer's & Dementia. 2008 Jan 1;4(1):S98-108. doi.org/10.1016/j.jalz.2007.11.017
75. Frederiksen KS, Gjerum L, Waldemar G, Hasselbalch SG. Effects of physical exercise on Alzheimer’s disease biomarkers: a systematic review of intervention studies. Journal of Alzheimer's Disease. 2018 Jan 1;61(1):359-72.DOI: 10.3233/JAD-170567
76. Falkai P, Malchow B, Schmitt A. Aerobic exercise and its effects on cognition in schizophrenia. Current opinion in psychiatry. 2017 May 1;30(3):171-5. doi.org/10.1097/YCO.0000000000000326
77. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological science. 2003 Mar;14(2):125-30. doi.org/10.1111/1467-9280.t01-1-01430
78. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF. Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2003 Feb 1;58(2):M176-80. doi.org/10.1093/gerona/58.2.M176
79. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF. Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2006 Nov 1;61(11):1166-70. doi.org/10.1093/gerona/61.11.1166
80. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell metabolism. 2013 Nov 5;18(5):649-59.
81. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E. Running-induced systemic cathepsin B secretion is associated with memory function. Cell metabolism. 2016 Aug 9;24(2):332-40DOI: [
DOI:10.1016/j.cmet.2016.05.025]
82. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF, Aboyans V. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017 Sep 16;390(10100):1211-59.DOI: [
DOI:10.1016/S0140-6736(17)32154-2]
83. Schlittler M, Goiny M, Agudelo LZ, Venckunas T, Brazaitis M, Skurvydas A, Kamandulis S, Ruas JL, Erhardt S, Westerblad H, Andersson DC. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. American Journal of Physiology-Cell Physiology. 2016 May 15. doi.org/10.1152/ajpcell.00053.2016
84. van der Kolk NM, King LA. Effects of exercise on mobility in people with Parkinson's disease. Movement Disorders. 2013 Sep 15;28(11):1587-96. doi.org/10.1002/mds.25658
85. Valle Gottlieb MG, Closs VE, Junges VM, Schwanke CH. Impact of human aging and modern lifestyle on gut microbiota. Critical reviews in food science and nutrition. 2018 Jun 13;58(9):1557-64. doi.org/10.1080/10408398.2016.1269054
86. Guldris SC, Parra EG, Amenós AC. Gut microbiota in chronic kidney disease. Nefrología (English Edition). 2017 Jan 1;37(1):9-19. doi.org/10.1016/j.nefroe.2017.01.017
87. Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Digestive and Liver Disease. 2018 Apr 1;50(4):331-41. doi.org/10.1016/j.dld.2017.11.016
88. Li Y, Tang R, Leung PS, Gershwin ME, Ma X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmunity reviews. 2017 Sep 1;16(9):885-96. doi.org/10.1016/j.autrev.2017.07.002
89. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec 1;63(12):1913-20. doi.org/10.1136/gutjnl-2013-306541
90. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives. 2013 Jun;121(6):725-30. doi.org/10.1289/ehp.1306534
91. Rescigno M. Intestinal microbiota and its effects on the immune system. Cellular Microbiology. 2014 Jul;16(7):1004-13. doi.org/10.1111/cmi.12301
92. Li G, Su H, Zhou Z, Yao W. Identification of the porcine G protein-coupled receptor 41 and 43 genes and their expression pattern in different tissues and development stages. PLoS One. 2014 May 19;9(5):e97342. doi.org/10.1371/journal.pone.0097342
93. Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015 Jan 1;21(21):70-9.
94. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC gastroenterology. 2015 Dec;15:1-0. doi.org/10.1186/s12876-015-0330-2
95. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Häggblom MM, Lightfoot SA, Joseph LB, Kerkhof LJ. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PloS one. 2016 Mar 8;11(3):e0150502. doi.org/10.1371/journal.pone.0150502
96. Mika A, Van Treuren W, González A, Herrera JJ, Knight R, Fleshner M. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PloS one. 2015 May 27;10(5):e0125889.
97. Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. Microbes & neurodevelopment–Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, behavior, and immunity. 2015 Nov 1;50:209-20. doi.org/10.1016/j.bbi.2015.07.009
98. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Microbial endocrinology: the microbiota-gut-brain axis in health and disease. 2014 Jun 9:115-33. doi.org/10.1007/978-1-4939-0897-4_5
99. Lim SY, Kwak YS. Effect of nutrients and exhaustive exercise on brain function. Journal of exercise rehabilitation. 2019 Jun;15(3):341. doi: 10.12965/jer.1938102.051
100. Perry RJ, Shulman GI. Treating fatty liver and insulin resistance. Aging (Albany NY). 2013 Nov;5(11):791. doi: 10.18632/aging.100617
101. Kurauti MA, Freitas-Dias R, Ferreira SM, Vettorazzi JF, Nardelli TR, Araujo HN, Santos GJ, Carneiro EM, Boschero AC, Rezende LF, Costa-Junior JM. Acute exercise improves insulin clearance and increases the expression of insulin-degrading enzyme in the liver and skeletal muscle of swiss mice. PloS one. 2016 Jul 28;11(7):e0160239. doi.org/10.1371/journal.pone.0160239
102. Tsuzuki T, Kobayashi H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Naito H. Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress and Chaperones. 2017 Mar;22:263-9. doi.org/10.1007/s12192-017-0767-z
103. Muñoz VR, Gaspar RC, Kuga GK, Nakandakari SC, Baptista IL, Mekary RA, da Silva AS, de Moura LP, Ropelle ER, Cintra DE, Pauli JR. Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation. Journal of Cellular Biochemistry. 2018 Jul;119(7):5885-92. doi.org/10.1002/jcb.26780
104. Pauly M, Assense A, Rondon A, Thomas A, Dubouchaud H, Freyssenet D, Benoit H, Castells J, Flore P. High intensity aerobic exercise training improves chronic intermittent hypoxia-induced insulin resistance without basal autophagy modulation. Scientific reports. 2017 Mar 3;7(1):43663. doi.org/10.1038/srep43663
105. Wang B, Zeng J, Gu Q. Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. Canadian Journal of Physiology and Pharmacology. 2017;95(6):667-74.
106. Jordy AB, Kraakman MJ, Gardner T, Estevez E, Kammoun HL, Weir JM, Kiens B, Meikle PJ, Febbraio MA, Henstridge DC. Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. American Journal of Physiology-Endocrinology and Metabolism. 2015 May 1;308(9):E778-91. doi.org/10.1152/ajpendo.00547.2014
107. Yi X, Cao S, Chang B, Zhao D, Gao H, Wan Y, Shi J, Wei W, Guan Y. Effects of acute exercise and chronic exercise on the liver leptin-AMPK-ACC signaling pathway in rats with type 2 diabetes. Journal of diabetes research. 2013 Jan 1;2013. doi.org/10.1155/2013/946432
108. Kang S, Kim KB, Shin KO. Exercise training improve leptin sensitivity in peripheral tissue of obese rats. Biochemical and biophysical research communications. 2013 Jun 7;435(3):454-9. doi.org/10.1016/j.bbrc.2013.05.007
109. Moon HY, Song P, Choi CS, Ryu SH, Suh PG. Involvement of exercise-induced macrophage migration inhibitory factor in the prevention of fatty liver disease. The Journal of endocrinology. 2013 Aug;218(3):339. doi: 10.1530/JOE-13-0135
110. Sabzevari Rad R, Shirvani H, Mahmoodzadeh Hosseini H, Shamsoddini A, Samadi M. Micro RNA-126 promoting angiogenesis in diabetic heart by VEGF/Spred-1/Raf-1 pathway: effects of high-intensity interval training. Journal of Diabetes & Metabolic Disorders. 2020 Dec;19:1089-96. doi.org/10.1007/s40200-020-00610-4.
111. Rad RS. Effect of Exercise and Non-exercise Interventions on Cardiac Angiogenesis in Diabetes Mellitus Patients: A Review. Int. J. Diabetes Endocrinol. 2022;7(1). doi: 10.11648/j.ijde.20220701.11
112. Merawati D, Sugiharto, Susanto H, Taufiq A, Pranoto A, Amelia D, Rejeki PS. Dynamic of irisin secretion change after moderate-intensity chronic physical exercise on obese female. Journal of Basic and Clinical Physiology and Pharmacology. 2023 May 22(0). doi.org/10.1515/jbcpp-2023-0041
113. Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutrition Research Reviews. 2023 Jul 3:1-82. doi.org/10.1017/S0954422423000124
114. Comità S, Rubeo C, Giordano M, Penna C, Pagliaro P. Pathways for Cardioprotection in Perspective: Focus on Remote Conditioning and Extracellular Vesicles. Biology. 2023 Feb 14;12(2):308. doi.org/10.3390/biology12020308
115. Yurdagul Jr A. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arteriosclerosis, Thrombosis, and Vascular Biology. 2022 Apr;42(4):372-80. doi: 10.1161/CIRCULATIONAHA.120.048378.
116. Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. Journal of cellular physiology. 2021 Apr;236(4):2393-412. doi.org/10.1002/jcp.30033
117. Scisciola L, Fontanella RA, Surina, Cataldo V, Paolisso G, Barbieri M. Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life. 2021 Feb 23;11(2):173. doi.org/10.3390/life11020173.
118. Li J, Xiang H, Xiong J. Current trends in the crosstalk between nervous systems and other body systems. Frontiers in Molecular Neuroscience. 2023 Feb 21;16:1157672.doi: 10.3389/fnmol.2023.1157672
119. Bostjancic E, Zidar N, Stajer D, Glavac D: Micrornas mir-1, mir-133a, mir-133b and mir-208 are dysregulated in human myocardial infarction. Cardiology. 2010, 115: 163-169. doi: 10.1159/000268088.
120. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B: The muscle-specific micrornas mir-1 and mir-133 produce opposing effects on apoptosis by targeting hsp60, hsp70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007, 120: 3045-3052. doi: 10.1242/jcs.010728.
121. He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG, Wang YW. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. Journal of biomedical science. 2011 Dec;18(1):1-0. doi.org/10.1186/1423-0127-18-22
122. Caldwell S, Lazo M. Is exercise an effective treatment for NASH? Knowns and unknowns. Annals of hepatology. 2009;8(S1):60-6.
123. Borengasser SJ, Rector RS, Uptergrove GM, et al. Exercise and omega-3 polyunsaturated fatty acid supplementation for the treatment of hepatic steatosis in hyperphagic OLETF rats. J Nutr Metab. 2012;2012:268680. .doi.org/10.1155/2012/268680.
124. Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G619–G626. doi.org/10.1152/ajpgi.00428.2007.
125. Rector RS, Uptergrove GM, Morris EM, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G874–G883. doi.org/10.1152/ajpgi.00510.2010.
126. Linden MA, Fletcher JA, Morris EM, et al. Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab. 2014;306(3):E300–E310. doi.org/10.1152/ajpendo.00427.2013.
127. Schultz A, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA. Swimming training beneficial effects in a mice model of nonalcoholic fatty liver disease. Exp Toxicol Pathol. 2012;64(4):273–282. doi.org/10.1016/j.etp.2010.08.019
128. Morris EM, Jackman MR, Johnson GC, et al. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab. 2014;307(4):E355–E364. doi.org/10.1152/ajpendo.00093.2014.
129. Lezi E, Lu J, Burns JM, Swerdlow RH. Effect of exercise on mouse liver and brain bioenergetic infrastructures. Exp Physiol. 2013;98(1):207–219. doi.org/10.1113/expphysiol.2012.066688. 130. Haase TN, Ringholm S, Leick L, et al. Role of PGC-1alpha in exercise and fasting-induced adaptations in mouse liver. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1501–R1509. doi.org/10.1152/ajpregu.00775.2010
130. Linden MA, Fletcher JA, Morris EM, et al. Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc. 2014 doi.org/10.1249/MSS.0000000000000430.
131. Lodewijks F, McKinsey TA, Robinson EL. Fat-to-heart crosstalk in health and disease. Frontiers in Genetics. 2023 Mar 24;14:990155. doi.org/10.3389/fgene.2023.990155
132. Zhao B, Bouchareb R, Lebeche D. Resistin deletion protects against heart failure injury by targeting DNA damage response. Cardiovascular Research. 2022 May 15;118(8):1947-63. doi.org/10.1093/cvr/cvab234.
133. Bradley D, Smith AJ, Blaszczak A, Shantaram D, Bergin SM, Jalilvand A, Wright V, Wyne KL, Dewal RS, Baer LA, Wright KR. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nature communications. 2022 Sep 24;13(1):5606. doi.org/10.1038/s41467-022-33067-5
134. Seo DY, Park SH, Marquez J, Kwak HB, Kim TN, Bae JH, Koh JH, Han J. Hepatokines as a molecular transducer of exercise. Journal of Clinical Medicine. 2021 Jan 20;10(3):385. doi.org/10.3390/jcm10030385.
135. Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS microbiology reviews. 2021 Jul;45(4):fuaa066. doi.org/10.1093/femsre/fuaa066
136. 137 Zhang P, Konja D, Wang Y. Adipose tissue secretory profile and cardiometabolic risk in obesity. Endocrine and Metabolic Science. 2020 Nov 1;1(3-4):100061. /doi.org/10.1016/j.endmts.2020.100061
137. Berezin AE, Berezin AA, Lichtenauer M. Emerging role of adipocyte dysfunction in inducing heart failure among obese patients with prediabetes and known diabetes mellitus. Frontiers in cardiovascular medicine. 2020 Nov 2;7:583175. doi:10.3389/fcvm.2020.583175
138. Fan Z, Xu M. Exercise and organ cross talk. Physical exercise for human health. 2020:63-76. doi: 10.1007/978-981-15-1792-1_4..
139. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. The Korean journal of internal medicine. 2016 Jul;31(4):643. doi: 10.3904/kjim.2016.015
140. Lavine KJ, Sierra OL. Skeletal muscle inflammation and atrophy in heart failure. Heart failure reviews. 2017 Mar; 22:179-89. doi.org/10.1007/s10741-016-9593-0
141. Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal muscle abnormalities in heart failure. International heart journal. 2015;56(5):475-84.
142. Weiss K, Schär M, Panjrath GS, Zhang Y, Sharma K, Bottomley PA, Golozar A, Steinberg A, Gerstenblith G, Russell SD, Weiss RG. Fatigability, exercise intolerance, and abnormal skeletal muscle energetics in heart failure. Circulation: Heart Failure. 2017 Jul;10(7):e004129 [
DOI:10.1161/CIRCHEARTFAILURE.117.004129.]
143. Fukui A, Kawabe N, Hashimoto S, Kamei H, Yoshioka K. Skeletal muscle mass depletion in patients with hepatitis C virus infection. European Journal of Gastroenterology & Hepatology. 2019 Jan 1;31(1):59-66. doi.org/10.1097/MEG.0000000000001255
144. Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcified tissue international. 2018 Apr;102(4):433-42. doi.org/10.1007/s00223-017-0345-5
145. Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S. Computational reconstruction of the human skeletal muscle secretome. PROTEINS: Structure, Function, and Bioinformatics. 2006 Feb 15;62(3):776-92. doi.org/10.1002/prot.20803
146. Gibb AA, Epstein PN, Uchida S, Zheng Y, McNally LA, Obal D, Katragadda K, Trainor P, Conklin DJ, Brittian KR, Tseng MT. Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation. 2017 Nov 28;136(22):2144-57. doi.org/10.1161/CIRCULATIONAHA.117.028274
147. Lobelo F, Stoutenberg M, Hutber A. The exercise is medicine global health initiative: a 2014 update. British journal of sports medicine. 2014 Dec 1;48(22):1627-33. doi.org/10.1136/bjsports-2013-093080
148. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological reviews. 2008 Oct;88(4):1379-406. doi.org/10.1152/physrev.90100.2007
149. Pedersen BK, Saltin B. Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports. 2015 Dec;25:1-72 ... doi.org/10.1111/sms.12581
150. Sääkslahti A, Numminen P, Varstala V, Helenius H, Tammi A, Viikari J, Välimäki I. Physical activity as a preventive measure for coronary heart disease risk factors in early childhood. Scandinavian journal of medicine & science in sports. 2004 Jun;14(3):143-9.doi.org/10.1111/j.1600-0838.2004.00347.x
151. Sallis RE. Exercise is medicine and physicians need to prescribe it! . British journal of sports medicine. 2009 Jan 1;43(1):3-4. doi.org/10.1136/bjsm.2008.054825
152. Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harbor perspectives in medicine. 2017 Nov 1;7(11):a029793. doi.org/10.1101/cshperspect.a029793
153. Iizuka K, Machida T, Hirafuji M. Skeletal muscle is an endocrine organ. Journal of pharmacological sciences. 2014 Jun 20;125(2):125-31.
154. Karstoft K, Pedersen BK. Skeletal muscle as a gene regulatory endocrine organ. Current opinion in clinical nutrition and metabolic care. 2016 Jul 1;19(4):270-5. doi.org/10.1097/MCO.0000000000000283
155. Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A, Chen MH. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell metabolism. 2014 Jan 7;19(1):96-108.
156. Abu-Elsaad N, El-Karef A. The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in wistar rats. Inflammation. 2018 Feb;41:221-31. doi.org/10.1007/s10753-017-0680-8
157. Dzau VJ, Swartz SL. Dissociation of the prostaglandin and renin angiotensin systems during captopril therapy for chronic congestive heart failure secondary to coronary artery disease. The American journal of cardiology. 1987 Nov 1;60(13):1101-5. doi.org/10.1016/0002-9149(87)90361-4
158. Middlekauff HR. The treatment of heart failure: the role of neurohumoral activation. Internal medicine. 1998;37(2):112-22.
159. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nature reviews cancer. 2006 Nov 1;6(11):857-66. doi.org/10.1038/nrc1997
160. Cummins JM, Velculescu VE. Implications of micro-RNA profiling for cancer diagnosis. Oncogene. 2006 Oct;25(46):6220-7. doi.org/10.1038/sj.onc.1209914
161. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. cell. 2004 Jan 23;116(2):281-97. doi.org/10.1016/S0092-8674(04)00045-5
162. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics. 2010 Dec;3(6):499-506. doi.org/10.1161/CIRCGENETICS.110.957415
163. D'alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European heart journal. 2010 Nov 1;31(22):2765-73. doi.org/10.1093/eurheartj/ehq167
164. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European heart journal. 2010 Mar 1;31(6):659-66. doi.org/10.1093/eurheartj/ehq013
165. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC, Thum T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of molecular and cellular cardiology. 2011 Nov 1;51(5):872-5. doi.org/10.1016/j.yjmcc.2011.07.011
166. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circulation: Cardiovascular Genetics. 2011 Dec;4(6):614-9. doi.org/10.1161/CIRCGENETICS.111.959841
167. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and biophysical research communications. 2010 Jan 1;391(1):73-7. doi.org/10.1016/j.bbrc.2009.11.005
168. Eitel I, Adams V, Dieterich P, Fuernau G, De Waha S, Desch S, Schuler G, Thiele H. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. American heart journal. 2012 Nov 1;164(5):706-14. doi.org/10.1016/j.ahj.2012.08.004
169. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation: Cardiovascular Genetics. 2011 Aug;4(4):446-54. doi.org/10.1161/CIRCGENETICS.110.958975
170. McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiological genomics. 2009 Nov;39(3):219-26. doi.org/10.1152/physiolgenomics.00042.2009
171. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends in Genetics. 2008 Apr 1;24(4):159-66. doi.org/10.1016/j.tig.2008.01.007
172. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental cell. 2009 Nov 17;17(5):662-73.
173. Duygu B, Da Costa Martins PA. miR-21: a star player in cardiac hypertrophy. Cardiovascular Research. 2015 Mar 1;105(3):235-7. doi.org/10.1093/cvr/cvv026
174. Cao W, Shi P, Ge JJ. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC cardiovascular disorders. 2017 Dec;17:1-1. doi.org/10.1186/s12872-017-0520-7
175. Dong X, Liu S, Zhang L, Yu S, Huo L, Qile M, Liu L, Yang B, Yu J. Downregulation of miR‐21 is Involved in Direct Actions of Ursolic Acid on the Heart: Implications for Cardiac Fibrosis and Hypertrophy. Cardiovascular Therapeutics. 2015 Aug;33(4):161-7. doi.org/10.1111/1755-5922.12125
176. Szemraj-Rogucka ZM, Szemraj J, Masiarek K, Majos A. Circulating microRNAs as biomarkers for myocardial fibrosis in patients with left ventricular non-compaction cardiomyopathy. Archives of Medical Science. 2019 Mar 1;15(2):376-84. doi.org/10.5114/aoms.2019.82919
177. Zanotti S, Gibertini S, Curcio M, Savadori P, Pasanisi B, Morandi L, Cornelio F, Mantegazza R, Mora M. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015 Jul 1;1852(7):1451-64. doi.org/10.1016/j.bbadis.2015.04.013
178. Wei X, Liu X, Rosenzweig A. What do we know about the cardiac benefits of exercise ?. Trends in cardiovascular medicine. 2015 Aug 1;25(6):529-36. doi.org/10.1016/j.tcm.2014.12.014
179. McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A. Protective effects of exercise and phosphoinositide 3-kinase (p110α) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences. 2007 Jan 9;104(2):612-7. doi.org/10.1073/pnas.060666310
180. Lenk K, Erbs S, Höllriegel R, Beck E, Linke A, Gielen S, Winkler SM, Sandri M, Hambrecht R, Schuler G, Adams V. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. European journal of preventive cardiology. 2012 Jun;19(3):404-11. doi.org/10.1177/1741826711402
181. Quindry J, French J, Hamilton K, Lee Y, Mehta JL, Powers S. Exercise training provides cardioprotection against ischemia–reperfusion induced apoptosis in young and old animals. Experimental gerontology. 2005 May 1;40(5):416-25. doi.org/10.1016/j.exger.2005.03.010
182. Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II, Filippaios A, Panagiotou G, Park KH, Mantzoros CS. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of Clinical Endocrinology & Metabolism. 2014 Nov 1;99(11):E2154-61. doi.org/10.1210/jc.2014-1437
183. Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology-Heart and Circulatory Physiology. 2015 Aug 15;309(4):H543-52. doi.org/10.1152/ajpheart.00899.2014
184. Russell AP, Lamon S. Exercise, skeletal muscle and circulating microRNAs. Progress in molecular biology and translational science. 2015 Jan 1;135:471-96 doi.org/10.1016/bs.pmbts.2015.07.018
185. Sandrow-Feinberg HR, Houlé JD. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain research. 2015 Sep 4;1619:12-21. doi.org/10.1016/j.brainres.2015.03.052
186. Wu XD, Zeng K, Liu WL, Gao YG, Gong CS, Zhang CX, Chen YQ. Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. International journal of sports medicine. 2014 Apr;35(04):344-50.
187. Yang F, You X, Xu T, Liu Y, Ren Y, Liu S, Wu F, Xu Z, Zou L, Wang G. Screening and function analysis of MicroRNAs involved in exercise preconditioning-attenuating pathological cardiac hypertrophy. International Heart Journal. 2018 Sep 1;59(5):1069-76.
188. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of applied physiology. 2007 Jan;102(1):306-13. doi.org/10.1152/japplphysiol.00932.2006
189. Wang B, Zhang C, Zhang A, Cai H, Price SR, Wang XH. MicroRNA-23a and microRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. Journal of the American Society of Nephrology: JASN. 2017 Sep;28(9):2631. doi: 10.1681/ASN.2016111213
190. Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Abhari A, Chodari L, Mohaddes G. Cardioprotective effect of crocin combined with voluntary exercise in rat: role of mir-126 and mir-210 in heart angiogenesis. Arquivos brasileiros de cardiologia. 2017 Jun 29;109:54-62.
191. Wang XH. MicroRNA in myogenesis and muscle atrophy. Current opinion in clinical nutrition and metabolic care. 2013 May;16(3):258. doi: 10.1097/MCO.0b013e32835f81b9
192. Soci UP, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics. 2011 Jun;43(11):665-73. doi.org/10.1152/physiolgenomics.00145.2010
193. nD Jr DS, Fernandes T, Soci UP, Monteiro AW, Phillips MI, EM DO. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Medicine and science in sports and exercise. 2012 Aug 1;44(8):1453-62. doi.org/10.1249/mss.0b013e31824e8a36
194. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ, Chan SY. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. The Journal of physiology. 2011 Aug;589(16):3983-94. doi.org/10.1113/jphysiol.2011.213363
195. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Boström P, Che L, Zhang C. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell metabolism. 2015 Apr 7;21(4):584-95.
196. 58Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics. 2017;7(3):664. doi: 10.7150/thno.15162
197. Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J, Li J, Sha J, Chen J, Xia J, Wang L. Longterm exercise-derived exosomal miR-342-5p: a novel exerkine for cardioprotection. Circulation research. 2019 Apr 26;124(9):1386-400. doi.org/10.1161/CIRCRESAHA.118.314635
198. Aydin S, Kuloglu T, Aydin S, Eren MN, Celik A, Yilmaz M, Kalayci M, Sahin İ, Gungor O, Gurel A, Ogeturk M. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle. Peptides. 2014 Feb 1;52:68-73. doi.org/10.1016/j.peptides.2013.11.024
199. Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. American Journal of Physiology-Endocrinology and Metabolism. 2016 Aug 1;311(2):E530-41. doi.org/10.1152/ajpendo.00094.2016
200. Wang L, Lv Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. Journal of sport and health science. 2018 Oct 1;7(4):433-41. doi.org/10.1016/j.jshs.2018.09.008
201. Hartmann P, Ramseier A, Gudat F, Mihatsch MJ, Polasek W. Normal weight of the brain in adults in relation to age, sex, body height and weight. Der Pathologe. 1994 Jun 1;15(3):165-70. doi.org/10.1007/s002920050040
202. Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. Journal of Cerebral Blood Flow & Metabolism. 1992 Mar;12(2):179-92. doi.org/10.1038/jcbfm.1992
203. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, Tinajero CD, Yuan LJ, Zhang R. Distribution of cardiac output to the brain across the adult lifespan. Journal of Cerebral Blood Flow & Metabolism. 2017 Aug;37(8):2848-56. doi.org/10.1177/0271678X16676826
204. Barnes JN. Exercise, cognitive function, and aging. Advances in physiology education. 2015 Jun;39(2):55-62. doi.org/10.1152/advan.00101.2014
205. Raichlen DA, Alexander GE. Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends in neurosciences. 2017 Jul 1;40(7):408-21. DOI: [
DOI:10.1016/j.tins.2017.05.001]
206. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006 Jan 1;140(3):823-33. doi.org/10.1016/j.neuroscience.2006.02.084
207. Li J, Liu Y, Liu B, Li F, Hu J, Wang Q, Li M, Lou S. Mechanisms of aerobic exercise upregulating the expression of hippocampal synaptic plasticity-associated proteins in diabetic rats. Neural plasticity. 2019 Feb 18;2019. doi.org/10.1155/2019/7920540
208. Loprinzi PD, Edwards MK, Frith E. Potential avenues for exercise to activate episodic memory‐related pathways: a narrative review. European Journal of Neuroscience. 2017 Sep;46(5):2067-77. doi.org/10.1111/ejn.13644
209. Robinson MM, Lowe VJ, Nair KS. Increased brain glucose uptake after 12 weeks of aerobic high-intensity interval training in young and older adults. The Journal of Clinical Endocrinology & Metabolism. 2018 Jan;103(1):221-7. doi.org/10.1210/jc.2017-01571
210. Ivanov AD. The role of NGF and BDNF in mature brain activity regulation. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova. 2014 Mar 1;64(2):137-46.
211. Thorin-Trescases N, de Montgolfier O, Pinçon A, Raignault A, Caland L, Labbé P, Thorin E. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. American Journal of Physiology-Heart and Circulatory Physiology. 2018 Jun 1;314(6):H1214-24. doi.org/10.1152/ajpheart.00637.2017
212. Reisberg B, Prichep L, Mosconi L, John ER, Glodzik-Sobanska L, Boksay I, Monteiro I, Torossian C, Vedvyas A, Ashraf N, Jamil IA. The pre–mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer's & Dementia. 2008 Jan 1;4(1):S98-108. doi.org/10.1016/j.jalz.2007.11.017
213. Frederiksen KS, Gjerum L, Waldemar G, Hasselbalch SG. Effects of physical exercise on Alzheimer’s disease biomarkers: a systematic review of intervention studies. Journal of Alzheimer's Disease. 2018 Jan 1;61(1):359-72.DOI: 10.3233/JAD-170567
214. Falkai P, Malchow B, Schmitt A. Aerobic exercise and its effects on cognition in schizophrenia. Current opinion in psychiatry. 2017 May 1;30(3):171-5. doi.org/10.1097/YCO.0000000000000326
215. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological science. 2003 Mar;14(2):125-30. doi.org/10.1111/1467-9280.t01-1-01430
216. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF. Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2003 Feb 1;58(2):M176-80. doi.org/10.1093/gerona/58.2.M176
217. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF. Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2006 Nov 1;61(11):1166-70. doi.org/10.1093/gerona/61.11.1166
218. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell metabolism. 2013 Nov 5;18(5):649-59.
219. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E. Running-induced systemic cathepsin B secretion is associated with memory function. Cell metabolism. 2016 Aug 9;24(2):332-40DOI: [
DOI:10.1016/j.cmet.2016.05.025]
220. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF, Aboyans V. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017 Sep 16;390(10100):1211-59.DOI: [
DOI:10.1016/S0140-6736(17)32154-2]
221. Schlittler M, Goiny M, Agudelo LZ, Venckunas T, Brazaitis M, Skurvydas A, Kamandulis S, Ruas JL, Erhardt S, Westerblad H, Andersson DC. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. American Journal of Physiology-Cell Physiology. 2016 May 15. doi.org/10.1152/ajpcell.00053.2016
222. van der Kolk NM, King LA. Effects of exercise on mobility in people with Parkinson's disease. Movement Disorders. 2013 Sep 15;28(11):1587-96. doi.org/10.1002/mds.25658
223. Valle Gottlieb MG, Closs VE, Junges VM, Schwanke CH. Impact of human aging and modern lifestyle on gut microbiota. Critical reviews in food science and nutrition. 2018 Jun 13;58(9):1557-64. doi.org/10.1080/10408398.2016.1269054
224. Guldris SC, Parra EG, Amenós AC. Gut microbiota in chronic kidney disease. Nefrología (English Edition). 2017 Jan 1;37(1):9-19. doi.org/10.1016/j.nefroe.2017.01.017
225. Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Digestive and Liver Disease. 2018 Apr 1;50(4):331-41. doi.org/10.1016/j.dld.2017.11.016
226. Li Y, Tang R, Leung PS, Gershwin ME, Ma X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmunity reviews. 2017 Sep 1;16(9):885-96. doi.org/10.1016/j.autrev.2017.07.002
227. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec 1;63(12):1913-20. doi.org/10.1136/gutjnl-2013-306541
228. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives. 2013 Jun;121(6):725-30. doi.org/10.1289/ehp.1306534
229. Rescigno M. Intestinal microbiota and its effects on the immune system. Cellular Microbiology. 2014 Jul;16(7):1004-13. doi.org/10.1111/cmi.12301
230. Li G, Su H, Zhou Z, Yao W. Identification of the porcine G protein-coupled receptor 41 and 43 genes and their expression pattern in different tissues and development stages. PLoS One. 2014 May 19;9(5):e97342. doi.org/10.1371/journal.pone.0097342
231. Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015 Jan 1;21(21):70-9.
232. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC gastroenterology. 2015 Dec;15:1-0. doi.org/10.1186/s12876-015-0330-2
233. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Häggblom MM, Lightfoot SA, Joseph LB, Kerkhof LJ. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PloS one. 2016 Mar 8;11(3):e0150502. doi.org/10.1371/journal.pone.0150502
234. Mika A, Van Treuren W, González A, Herrera JJ, Knight R, Fleshner M. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PloS one. 2015 May 27;10(5):e0125889.
235. Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. Microbes & neurodevelopment–Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, behavior, and immunity. 2015 Nov 1;50:209-20. doi.org/10.1016/j.bbi.2015.07.009
236. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Microbial endocrinology: the microbiota-gut-brain axis in health and disease. 2014 Jun 9:115-33. doi.org/10.1007/978-1-4939-0897-4_5
237. Lim SY, Kwak YS. Effect of nutrients and exhaustive exercise on brain function. Journal of exercise rehabilitation. 2019 Jun;15(3):341. doi: 10.12965/jer.1938102.051
238. Perry RJ, Shulman GI. Treating fatty liver and insulin resistance. Aging (Albany NY). 2013 Nov;5(11):791. doi: 10.18632/aging.100617
239. Kurauti MA, Freitas-Dias R, Ferreira SM, Vettorazzi JF, Nardelli TR, Araujo HN, Santos GJ, Carneiro EM, Boschero AC, Rezende LF, Costa-Junior JM. Acute exercise improves insulin clearance and increases the expression of insulin-degrading enzyme in the liver and skeletal muscle of swiss mice. PloS one. 2016 Jul 28;11(7):e0160239. doi.org/10.1371/journal.pone.0160239
240. Tsuzuki T, Kobayashi H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Naito H. Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress and Chaperones. 2017 Mar;22:263-9. doi.org/10.1007/s12192-017-0767-z
241. Muñoz VR, Gaspar RC, Kuga GK, Nakandakari SC, Baptista IL, Mekary RA, da Silva AS, de Moura LP, Ropelle ER, Cintra DE, Pauli JR. Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation. Journal of Cellular Biochemistry. 2018 Jul;119(7):5885-92. doi.org/10.1002/jcb.26780
242. Pauly M, Assense A, Rondon A, Thomas A, Dubouchaud H, Freyssenet D, Benoit H, Castells J, Flore P. High intensity aerobic exercise training improves chronic intermittent hypoxia-induced insulin resistance without basal autophagy modulation. Scientific reports. 2017 Mar 3;7(1):43663. doi.org/10.1038/srep43663
243. Wang B, Zeng J, Gu Q. Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. Canadian Journal of Physiology and Pharmacology. 2017;95(6):667-74.
244. Jordy AB, Kraakman MJ, Gardner T, Estevez E, Kammoun HL, Weir JM, Kiens B, Meikle PJ, Febbraio MA, Henstridge DC. Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. American Journal of Physiology-Endocrinology and Metabolism. 2015 May 1;308(9):E778-91. doi.org/10.1152/ajpendo.00547.2014
245. Yi X, Cao S, Chang B, Zhao D, Gao H, Wan Y, Shi J, Wei W, Guan Y. Effects of acute exercise and chronic exercise on the liver leptin-AMPK-ACC signaling pathway in rats with type 2 diabetes. Journal of diabetes research. 2013 Jan 1;2013. doi.org/10.1155/2013/946432
246. Kang S, Kim KB, Shin KO. Exercise training improve leptin sensitivity in peripheral tissue of obese rats. Biochemical and biophysical research communications. 2013 Jun 7;435(3):454-9. doi.org/10.1016/j.bbrc.2013.05.007
247. Moon HY, Song P, Choi CS, Ryu SH, Suh PG. Involvement of exercise-induced macrophage migration inhibitory factor in the prevention of fatty liver disease. The Journal of endocrinology. 2013 Aug;218(3):339. doi: 10.1530/JOE-13-0135
248. Sabzevari Rad R, Shirvani H, Mahmoodzadeh Hosseini H, Shamsoddini A, Samadi M. Micro RNA-126 promoting angiogenesis in diabetic heart by VEGF/Spred-1/Raf-1 pathway: effects of high-intensity interval training. Journal of Diabetes & Metabolic Disorders. 2020 Dec;19:1089-96. doi.org/10.1007/s40200-020-00610-4.
249. Rad RS. Effect of Exercise and Non-exercise Interventions on Cardiac Angiogenesis in Diabetes Mellitus Patients: A Review. Int. J. Diabetes Endocrinol. 2022;7(1). doi: 10.11648/j.ijde.20220701.11
250. Merawati D, Sugiharto, Susanto H, Taufiq A, Pranoto A, Amelia D, Rejeki PS. Dynamic of irisin secretion change after moderate-intensity chronic physical exercise on obese female. Journal of Basic and Clinical Physiology and Pharmacology. 2023 May 22(0). doi.org/10.1515/jbcpp-2023-0041
251. Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutrition Research Reviews. 2023 Jul 3:1-82. doi.org/10.1017/S0954422423000124
252. Comità S, Rubeo C, Giordano M, Penna C, Pagliaro P. Pathways for Cardioprotection in Perspective: Focus on Remote Conditioning and Extracellular Vesicles. Biology. 2023 Feb 14;12(2):308. doi.org/10.3390/biology12020308
253. Yurdagul Jr A. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arteriosclerosis, Thrombosis, and Vascular Biology. 2022 Apr;42(4):372-80. doi: 10.1161/CIRCULATIONAHA.120.048378.
254. Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. Journal of cellular physiology. 2021 Apr;236(4):2393-412. doi.org/10.1002/jcp.30033
255. Scisciola L, Fontanella RA, Surina, Cataldo V, Paolisso G, Barbieri M. Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life. 2021 Feb 23;11(2):173. doi.org/10.3390/life11020173.
256. Li J, Xiang H, Xiong J. Current trends in the crosstalk between nervous systems and other body systems. Frontiers in Molecular Neuroscience. 2023 Feb 21;16:1157672.doi: 10.3389/fnmol.2023.1157672
257. Bostjancic E, Zidar N, Stajer D, Glavac D: Micrornas mir-1, mir-133a, mir-133b and mir-208 are dysregulated in human myocardial infarction. Cardiology. 2010, 115: 163-169. doi: 10.1159/000268088.
258. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B: The muscle-specific micrornas mir-1 and mir-133 produce opposing effects on apoptosis by targeting hsp60, hsp70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007, 120: 3045-3052. doi: 10.1242/jcs.010728.
259. He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG, Wang YW. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. Journal of biomedical science. 2011 Dec;18(1):1-0. doi.org/10.1186/1423-0127-18-22
260. Caldwell S, Lazo M. Is exercise an effective treatment for NASH? Knowns and unknowns. Annals of hepatology. 2009;8(S1):60-6.
261. Borengasser SJ, Rector RS, Uptergrove GM, et al. Exercise and omega-3 polyunsaturated fatty acid supplementation for the treatment of hepatic steatosis in hyperphagic OLETF rats. J Nutr Metab. 2012;2012:268680. .doi.org/10.1155/2012/268680.
262. Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G619–G626. doi.org/10.1152/ajpgi.00428.2007.
263. Rector RS, Uptergrove GM, Morris EM, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G874–G883. doi.org/10.1152/ajpgi.00510.2010.
264. Linden MA, Fletcher JA, Morris EM, et al. Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab. 2014;306(3):E300–E310. doi.org/10.1152/ajpendo.00427.2013.
265. Schultz A, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA. Swimming training beneficial effects in a mice model of nonalcoholic fatty liver disease. Exp Toxicol Pathol. 2012;64(4):273–282. doi.org/10.1016/j.etp.2010.08.019
266. Morris EM, Jackman MR, Johnson GC, et al. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab. 2014;307(4):E355–E364. doi.org/10.1152/ajpendo.00093.2014.
267. Lezi E, Lu J, Burns JM, Swerdlow RH. Effect of exercise on mouse liver and brain bioenergetic infrastructures. Exp Physiol. 2013;98(1):207–219. doi.org/10.1113/expphysiol.2012.066688. 130. Haase TN, Ringholm S, Leick L, et al. Role of PGC-1alpha in exercise and fasting-induced adaptations in mouse liver. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1501–R1509. doi.org/10.1152/ajpregu.00775.2010
268. Linden MA, Fletcher JA, Morris EM, et al. Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc. 2014 doi.org/10.1249/MSS.0000000000000430.
269. Lodewijks F, McKinsey TA, Robinson EL. Fat-to-heart crosstalk in health and disease. Frontiers in Genetics. 2023 Mar 24;14:990155. doi.org/10.3389/fgene.2023.990155
270. Zhao B, Bouchareb R, Lebeche D. Resistin deletion protects against heart failure injury by targeting DNA damage response. Cardiovascular Research. 2022 May 15;118(8):1947-63. doi.org/10.1093/cvr/cvab234.
271. Bradley D, Smith AJ, Blaszczak A, Shantaram D, Bergin SM, Jalilvand A, Wright V, Wyne KL, Dewal RS, Baer LA, Wright KR. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nature communications. 2022 Sep 24;13(1):5606. doi.org/10.1038/s41467-022-33067-5
272. Seo DY, Park SH, Marquez J, Kwak HB, Kim TN, Bae JH, Koh JH, Han J. Hepatokines as a molecular transducer of exercise. Journal of Clinical Medicine. 2021 Jan 20;10(3):385. doi.org/10.3390/jcm10030385.
273. Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS microbiology reviews. 2021 Jul;45(4):fuaa066. doi.org/10.1093/femsre/fuaa066
274. 137 Zhang P, Konja D, Wang Y. Adipose tissue secretory profile and cardiometabolic risk in obesity. Endocrine and Metabolic Science. 2020 Nov 1;1(3-4):100061. /doi.org/10.1016/j.endmts.2020.100061
275. Berezin AE, Berezin AA, Lichtenauer M. Emerging role of adipocyte dysfunction in inducing heart failure among obese patients with prediabetes and known diabetes mellitus. Frontiers in cardiovascular medicine. 2020 Nov 2;7:583175. doi:10.3389/fcvm.2020.583175
276. Fan Z, Xu M. Exercise and organ cross talk. Physical exercise for human health. 2020:63-76. doi: 10.1007/978-981-15-1792-1_4..