دوره 10، شماره 40 - ( 6-1399 )                   جلد 10 شماره 40 صفحات 9-24 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmati F, Jalili S. Clinical Manifestations and Diagnostic Methods of Covid-19. NCMBJ. 2020; 10 (40) :9-24
URL: http://ncmbjpiau.ir/article-1-1317-fa.html
رحمتی فرشته، جلیلی شیرین. تظاهرات بالینی و روش های تشخیصی کووید-19. مجله تازه هاي بيوتكنولوژي سلولي و مولكولي. 1399; 10 (40) :9-24

URL: http://ncmbjpiau.ir/article-1-1317-fa.html


دانشکده زیست شناسی، دپارتمان بیوشیمی، دانشگاه آزاد ، واحد تهران شمال، تهران، ایران.
چکیده:   (914 مشاهده)
 
سابقه و هدف: شیوع بالای بیماری کووید-19 که از اواخر دسامبر سال 2019 از ووهان چین شروع به پخش شدن کرده است، باعث افزایش شدید آمار مرگ‌ومیر جهانی شده است، به طوری­ که که شاهد یک پنومونی جهانی ناشی از ابتلا افراد به این ویروس هستیم که منجر به بروز یک معضل بزرگ بهداشتی در جهان شده است. ازاین‌رو ضرورت پیشگیری زودهنگام آن از طریق تشخیص صحیح و به‌موقع این بیماری، به‌منظور کنترل آن به­خصوص در بیماران خاص و جلوگیری از شیوع مجدد آن بسیار الزامی است.
مواد و روش ­ها: در این مطالعه، براساس نتایج تحقیقات منتشرشده در پایگاه¬های ISI, Wiley, Science direct, PubMed, Scopus  و ... از ژانویه  تا جولای 2020، روش‌های تشخیصی که بر پایه ویژگی‌های ساختاری (تکنیک­های سرولوژیکی از جمله کیت­های الایزا) و تظاهرات بالینی کووید-19 ( سیتی اسکن ریه) به‌منظور تشخیص صحیح و به‌موقع این بیماری در حال استفاده می‌باشند موردبررسی قرارگرفته است.
یافته­ ها: کووید-19 به‌علت داشتن دوره نهفتگی 2 تا 14روزه، شباهت علائم آن با سرماخوردگی و توانایی انتقال بالای آن بین افراد مختلف شیوع شدیدی در سراسر جهان پیداکرده است و در حال حاضر به­عنوان یک معضل بزرگ بهداشتی قلمداد می¬شود. از این­رو بکارگیری روش­های تشخیصی مناسب و کارآمد یکی از مهم­ترین گزینه­های کنترل این بیماری است. نتایج حاصل از پژوهش¬های منتشرشده نشان می‌دهد که کیت¬ها و روش‌های تشخیصی کووید- 19 که بر پایه تکنیک‌های سرولوژیکی، مولکولی و تکنیک سی‌تی‌اسکن طراحی‌شده‌اند از متداول‌ترین روش‌های تشخیصی در سراسر جهان محسوب می‌شوند. هرچند که این روش‌ها در بعضی از شرایط دارای نتایج مثبت و منفی کاذبی هستند. در این میان نتایج کاذب حاصل از روش‌های سی‌تی‌اسکن نسبت­به سایر روش‌ها کم­تر گزارش‌شده است.
نتیجه ­گیری: توصیه می‌شود که جهت تشخیص صحیح و به‌موقع این بیماری به­خصوص
متن کامل [PDF 8030 kb]   (381 دریافت) |   |   متن کامل (HTML)  (560 مشاهده)  
نوع مطالعه: مقاله مروری | موضوع مقاله: سلولی و مولکولی
دریافت: 1399/7/24 | پذیرش: 1399/6/10 | انتشار: 1399/6/10

فهرست منابع
1. Q. Li et al., “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia,” N. Engl. J. Med., vol. 382, no. 13, pp. 1199–1207, Mar. 2020, doi: 10.1056/NEJMoa2001316.
2. A. R. Fehr and S. Perlman, “Coronaviruses: an overview of their replication and pathogenesis,” Methods Mol. Biol. Clifton NJ, vol. 1282, pp. 1–23, 2015, doi: 10.1007/978-1-4939-2438-7_1.
3. G. Wong, W. Liu, Y. Liu, B. Zhou, Y. Bi, and G. F. Gao, “MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease,” Cell Host Microbe, vol. 18, no. 4, pp. 398–401, Oct. 2015, doi: 10.1016/j.chom.2015.09.013.
4. E. R. Gaunt, A. Hardie, E. C. J. Claas, P. Simmonds, and K. E. Templeton, “Epidemiology and Clinical Presentations of the Four Human Coronaviruses 229E, HKU1, NL63, and OC43 Detected over 3 Years Using a Novel Multiplex Real-Time PCR Method,” J. Clin. Microbiol., vol. 48, no. 8, pp. 2940–2947, Aug. 2010, doi: 10.1128/JCM.00636-10.
5. J. Riou and C. L. Althaus, “Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020,” Eurosurveillance, vol. 25, no. 4, Jan. 2020, doi: 10.2807/1560-7917.ES.2020.25.4.2000058.
6. “(PDF) History is repeating itself, a probable zoonotic spillover as a cause of an epidemic: the case of 2019 novel Coronavirus,”ResearchGate. https: //www. researchgate .net/ publication/ 338934614_History_is_repeating_itself_a_probable_zoonotic_spillover_as_a_cause_of_an_epidemic_the_case_of_2019_novel_Coronavirus (accessed Aug. 29, 2020).
7. N. Chen et al., “Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study,” The Lancet, vol. 395, no. 10223, pp. 507–513, Feb. 2020, doi: 10.1016/S0140-6736(20)30211-7.
8. B. Tang et al., “Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions,” J. Clin. Med., vol. 9, no. 2, Feb. 2020, doi: 10.3390/jcm9020462.
9. R. Kumar, S. Nagpal, S. Kaushik, and S. Mendiratta, “COVID-19 diagnostic approaches: different roads to the same destination,” VirusDisease, vol. 31, no. 2, pp. 97–105, Jun. 2020, doi: 10.1007/s13337-020-00599-7.
10. H. Chen et al., “Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records,” The Lancet, vol. 395, no. 10226, pp. 809–815, Mar. 2020, doi: 10.1016/S0140-6736(20)30360-3.
11. 11. C. Huang et al., “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,” The Lancet, vol. 395, no. 10223, pp. 497–506, Feb. 2020, doi: 10.1016/S0140-6736(20)30183-5.
12. W. Z, C. X, L. Y, C. F, and Z. W, “Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment.,” Biosci. Trends, vol. 14, no. 1, pp. 64–68, Feb. 2020, doi: 10.5582/bst.2020.01030.
13. D. Kapetanos, “Review of ‘Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China,’” p. 3, 2019.
14. J. Zhang et al., “Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing,” Int. Immunopharmacol., vol. 88, p. 106861, Nov. 2020, doi: 10.1016/j.intimp.2020.106861.
15. “(PDF) Clinical Characteristics of Coronavirus Disease 2019 in China,” ResearchGate. https://www.researchgate.net/publication/339581314_Clinical_Characteristics_of_Coronavirus_Disease_2019_in_China (accessed Aug. 29, 2020).
16. J. Zhang et al., “Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China,” Allergy, vol. 75, no. 7, pp. 1730–1741, 2020, doi: 10.1111/all.14238.
17. Z. Hu et al., “Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China,” Sci. China Life Sci., vol. 63, no. 5, pp. 706–711, May 2020, doi: 10.1007/s11427-020-1661-4.
18. P. Zhou et al., “Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin,” medRxiv, 2020, doi: 10.1101/2020.01.22.914952.
19. W. Zhang et al., “Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes,” Emerg. Microbes Infect., vol. 9, no. 1, pp. 386–389, Jan. 2020, doi: 10.1080/22221751.2020.1729071.
20. “Clinical Features of Patients Infected with the 2019 Novel Coronavirus (COVID-19) in Shanghai, China,” ResearchGate. https: //www.researchgate.net/ publication/ 339753498_Clinical_Features_of_Patients_Infected_with_the_2019_Novel_Coronavirus_COVID-19_in_Shanghai_China (accessed Aug. 29, 2020).
21. A. Balboni, L. Gallina, A. Palladini, S. Prosperi, and M. Battilani, “A real-time PCR assay for bat SARS-like coronavirus detection and its application to Italian greater horseshoe bat faecal sample surveys,” ScientificWorldJournal, vol. 2012, p. 989514, 2012, doi: 10.1100/2012/989514.
22. D. Adachi et al., “Comprehensive detection and identification of human coronaviruses, including the SARS-associated coronavirus, with a single RT-PCR assay,” J. Virol. Methods, vol. 122, no. 1, pp. 29–36, Dec. 2004, doi: 10.1016/j.jviromet.2004.07.008.
23. T. Y. Setianingsih et al., “Detection of multiple viral sequences in the respiratory tract samples of suspected Middle East respiratory syndrome coronavirus patients in Jakarta, Indonesia 2015–2016,” Int. J. Infect. Dis., vol. 86, pp. 102–107, Sep. 2019, doi: 10.1016/j.ijid.2019.06.022.
24. Z. Wan et al., “A Melting Curve-Based Multiplex RT-qPCR Assay for Simultaneous Detection of Four Human Coronaviruses,” Int. J. Mol. Sci., vol. 17, no. 11, Nov. 2016, doi: 10.3390/ijms17111880.
25. J. Y. Noh et al., “Simultaneous detection of severe acute respiratory syndrome, Middle East respiratory syndrome, and related bat coronaviruses by real-time reverse transcription PCR,” Arch. Virol., vol. 162, no. 6, pp. 1617–1623, 2017, doi: 10.1007/s00705-017-3281-9.
26. G.-Q. Qian et al., “Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective, multi-centre case series,” QJM Int. J. Med., vol. 113, no. 7, pp. 474–481, Jul. 2020, doi: 10.1093/qjmed/hcaa089.
27. L. Peng et al., “2019 Novel Coronavirus can be detected in urine, blood, anal swabs and oropharyngeal swabs samples,” Infectious Diseases (except HIV/AIDS), preprint, Feb. 2020. doi: 10.1101/2020.02.21.20026179.
28. D. K. W. Chu et al., “Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia,” Clin. Chem., vol. 66, no. 4, pp. 549–555, 01 2020, doi: 10.1093/clinchem/hvaa029.
29. Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal amplification (LAMP): recent progress in research and development,” J. Infect. Chemother., vol. 19, no. 3, pp. 404–411, Jan. 2013, doi: 10.1007/s10156-013-0590-0.
30. J. Kashir and A. Yaqinuddin, “Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19,” Med. Hypotheses, vol. 141, p. 109786, Aug. 2020, doi: 10.1016/j.mehy.2020.109786.
31. L. L. M. Poon et al., “Rapid Detection of the Severe Acute Respiratory Syndrome (SARS) Coronavirus by a Loop-Mediated Isothermal Amplification Assay,” Clin. Chem., vol. 50, no. 6, pp. 1050–1052, Jun. 2004, doi: 10.1373/clinchem.2004.032011.
32. K. Shirato et al., “Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus,” J. Virol. Methods, vol. 258, pp. 41–48, Aug. 2018, doi: 10.1016/j.jviromet.2018.05.006.
33. M. Shen et al., “Recent advances and perspectives of nucleic acid detection for coronavirus,” J. Pharm. Anal., vol. 10, no. 2, pp. 97–101, Apr. 2020, doi: 10.1016/j.jpha.2020.02.010.
34. Q. Chen, J. Li, Z. Deng, W. Xiong, Q. Wang, and Y.-Q. Hu, “Comprehensive detection and identification of seven animal coronaviruses and human respiratory coronavirus 229E with a microarray hybridization assay,” Intervirology, vol. 53, no. 2, pp. 95–104, 2010, doi: 10.1159/000264199.
35. X. Guo, P. Geng, Q. Wang, B. Cao, and B. Liu, “Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus,” J. Microbiol. Biotechnol., vol. 24, no. 10, pp. 1445–1454, Oct. 2014, doi: 10.4014/jmb.1404.04024.
36. 36. M. Gaudin and C. Desnues, “Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases,” Front. Microbiol., vol. 9, Nov. 2018, doi: 10.3389/fmicb.2018.02924.
37. T. N. Wylie, K. M. Wylie, B. N. Herter, and G. A. Storch, “Enhanced virome sequencing using targeted sequence capture,” Genome Res., vol. 25, no. 12, pp. 1910–1920, Dec. 2015, doi: 10.1101/gr.191049.115.
38. S. K. P. Lau et al., “Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome,” Virology, vol. 367, no. 2, pp. 428–439, Oct. 2007, doi: 10.1016/j.virol.2007.06.009.
39. T. Ai et al., “Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases,” Radiology, vol. 296, no. 2, pp. E32–E40, 2020, doi: 10.1148/radiol.2020200642.
40. X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, and J. Liu, “Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing,” Radiology, vol. 296, no. 2, pp. E41–E45, 2020, doi: 10.1148/radiol.2020200343.
41. “(PDF) Clinical characterization and chest CT findings in laboratory-confirmed COVID-19: a systematic review and meta-analysis,”ResearchGate. https: //www.researchgate.net/ publication/ 339789188_Clinical_characterization_and_chest_CT_findings_in_laboratory-confirmed_COVID-19_a_systematic_review_and_meta-analysis (accessed Sep. 01, 2020).
42. A. Bernheim et al., “Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection,” Radiology, vol. 295, no. 3, p. 200463, Feb. 2020, doi: 10.1148/ radiol.2020200463.
43. M. Chung et al., “CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV),” Radiology, vol. 295, no. 1, pp. 202–207, 2020, doi: 10.1148/radiol.2020200230.
44. K. Li et al., “The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia,” Invest. Radiol., 2020, doi: 10.1097/RLI.0000000000000672.
45. H. Shi et al., “Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study,” Lancet Infect. Dis., vol. 20, no. 4, pp. 425–434, Apr. 2020, doi: 10.1016/S1473-3099(20)30086-4.
46. M. Wang et al., “Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan,” medRxiv, p. 2020.02.12.20022327, Feb. 2020, doi: 10.1101/2020.02.12.20022327.
47. L. Yang, “Clinical Reports on Early Diagnosis of Novel Coronavirus (2019-nCoV)Pneumonia in Stealth Infected Patients,” Sci. Res. Prepr., Feb. 2020, doi: 10.14293/S1111.000/000004.v1.
48. Z. Xu et al., “Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation,” bioRxiv, p. 2020.01.27.921627, Jan. 2020, doi: 10.1101/2020.01.27.921627.
49. J. Lim et al., “Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR,” J. Korean Med. Sci., vol. 35, no. 6, p. e79, Feb. 2020, doi: 10.3346/jkms.2020.35.e79.
50. S. Mulangu et al., “A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics,” N. Engl. J. Med., vol. 381, no. 24, pp. 2293–2303, Dec. 2019, doi: 10.1056/NEJMoa1910993.
51. S. Faridi et al., “A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran,” Sci. Total Environ., vol. 725, p. 138401, Jul. 2020, doi: 10.1016/j.scitotenv.2020.138401.
52. “A Model for COVID-19 Prediction in Iran Based on China Parameters.” http://www.aimjournal.ir/Article/aim-15640 (accessed Aug. 16, 2020).
53. B. Eshrati, H. R. Baradaran, S. Erfanpoor, A. Mohazzab, and Y. Moradi, “Investigating the factors affecting the survival rate in patients with COVID-19: A retrospective cohort study,” Med. J. Islam. Repub. Iran MJIRI, vol. 34, no. 1, pp. 618–626, Feb. 2020, doi: 10.34171/mjiri.34.88.
54. S. H. R. Faiz, T. Riahi, P. Rahimzadeh, and N. Nikoubakht, “Commentary: Remote electronic consultation for COVID-19 patients in teaching hospitals in Tehran, Iran,” Med. J. Islam. Repub. Iran MJIRI, vol. 34, no. 1, pp. 217–218, Feb. 2020, doi: 10.34171/mjiri.34.31.
55. M. Jalili, P. Payandemehr, A. Saghaei, H. N. Sari, H. Safikhani, and P. Kolivand, “Characteristics and Mortality of Hospitalized Patients With COVID-19 in Iran: A National Retrospective Cohort Study,” Ann. Intern. Med., Jul. 2020, doi: 10.7326/M20-2911.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به مجله تازه های بیوتکنولوژی سلولی - مولکولی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 CC BY-NC 4.0 | New Cellular and Molecular Biotechnology Journal

Designed & Developed by : Yektaweb